
Lecture 6

Red-Black Trees: Insertion, Deletion

Source: Introduction to Algorithms, CLRS

RB-Trees: Insertion Cases

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.1 z z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.1 z z

• Case : ’s uncle is black and is a right child.2 z z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.1 z z

• Case : ’s uncle is black and is a right child.2 z z

• Case : ’s uncle is black and is a left child.3 z z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.1 z z

• Case : ’s uncle is black and is a right child.2 z z

• Case : ’s uncle is black and is a left child.3 z z

After doing local fix-up,

will set to its parent’s parent.

z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.1 z z

• Case : ’s uncle is black and is a right child.2 z z

• Case : ’s uncle is black and is a left child.3 z z

After doing local fix-up,

will set to its parent’s parent.

z

Gets converted to Case 3

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.1 z z

• Case : ’s uncle is black and is a right child.2 z z

• Case : ’s uncle is black and is a left child.3 z z

After doing local fix-up,

will set to its parent’s parent.

z

Gets converted to Case 3

Fix-up will be enough to terminate the process

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.

• Case : ’s uncle is black and is a right child.

• Case : ’s uncle is black and is a left child.

1 z z

2 z z

3 z z

• If parent of does not exist, make black and exit.z z

RB-Trees: Insertion Cases

Let be the newly inserted node with colour red. Then,z

• If parent of is black, nothing needs to be done.z

• If parent of is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent) is red.

• Case : ’s uncle is black and is a right child.

• Case : ’s uncle is black and is a left child.

1 z z

2 z z

3 z z

• If parent of does not exist, make black and exit.z z

We will see the fix ups assuming

parent of is a left child. z

RB-Trees: Insertion Case 1

RB-Trees: Insertion Case 1
Case : ’s uncle (sibling of ’s parent) is red.1 z z

RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent) is red.1 z z

14

z

’s unclez

RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent) is red.1 z z

14

z

’s unclez

RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent) is red.1 z z

14

11

2

1 157

5 8

4

14

z

’s unclez

RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent) is red.1 z z

14

11

2

1 157

5 8

4

14

z

’s unclez

Make ’s parent, uncle blackz

RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent) is red.1 z z

14

11

2

1 157

5 8

4

14

z

’s unclez

Make ’s parent, uncle blackz

Make ’s

grandpa red

z

RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent) is red.1 z z

14

11

2

1 157

5 8

4

14

z

z

’s unclez

Set to its grandpaz

RB-Trees: Insertion Case 2
Case : ’s uncle is black and is a right child.2 z z

11

2

1 157

5 8

4

14

z

RB-Trees: Insertion Case 2
Case : ’s uncle is black and is a right child.2 z z

11

2

1 157

5 8

4

14

z

RB-Trees: Insertion Case 2
Case : ’s uncle is black and is a right child.2 z z

11

2

1 157

5 8

4

14

z

RB-Trees: Insertion Case 2
Case : ’s uncle is black and is a right child.2 z z

11

2

1 157

5 8

4

14

z

Set to its parent and

Left-rotate
z

(T, z)

RB-Trees: Insertion Case 2
Case : ’s uncle is black and is a right child.2 z z

11

2

1 157

5 8

4

14

z

11

2

1

15

7

5

8

4

14

z

Set to its parent and

Left-rotate
z

(T, z)

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

11

2

1

15

7

5

8

4

14

z

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

11

2

1

15

7

5

8

4

14

z

Black height is disturbed,
’s grandparent’s parent might be redz

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

11

2

1

15

7

5

8

4

14

z

Black height is disturbed,
’s grandparent’s parent might be redz

RB-Trees: Insertion Case 3
Case : ’s uncle is black and is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

112

1

15

7

5 8

4

14

z

Colour ’s parent black and

s grandparent red and

Right-rotate

z
z′￼

(T, z . p . p)

RB-Trees: Deletion

RB-Trees: Deletion

Two stages of deletion:

RB-Trees: Deletion

Two stages of deletion:

• Delete the node as we do in a BST.

RB-Trees: Deletion

Two stages of deletion:

• Delete the node as we do in a BST.

• Do fix-ups as deletion may cause a violation of a few Red-blue properties.

RB-Trees: Deletion

Two stages of deletion:

• Delete the node as we do in a BST.

• Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let’s recall deletion in a BST and spot special nodes, and .y x

RB-Trees: Deletion

Two stages of deletion:

• Delete the node as we do in a BST.

• Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let’s recall deletion in a BST and spot special nodes, and .y x

 will be the node we will “actually” be taking out

and whether fix ups are require will depend on the colour of

y
y

RB-Trees: Deletion

Two stages of deletion:

• Delete the node as we do in a BST.

• Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let’s recall deletion in a BST and spot special nodes, and .y x

Fix ups will start from after removing x y

Recall Deletion in BSTs

Recall Deletion in BSTs

Let be the node we want to delete.z

Recall Deletion in BSTs

Let be the node we want to delete.z Then, the following cases are possible:

Recall Deletion in BSTs

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

Recall Deletion in BSTs

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

Recall Deletion in BSTs

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Recall Deletion in BSTs

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Easy

Recall Deletion in BSTs

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Easy

Not so easy

RB-Trees: Deletion

Case has no (non-NIL) children.1: z

z

q

(WLOG assume is a right child.)z

NIL

q

NIL

RB-Trees: Deletion

Case has no (non-NIL) children.1: z

z

q

(WLOG assume is a right child.)z

NIL

q

NIL

y

RB-Trees: Deletion

Case has no (non-NIL) children.1: z

z

q

(WLOG assume is a right child.)z

NIL

q

NIL

x

y

RB-Trees: Deletion

Case has no (non-NIL) children.1: z

z

q

(WLOG assume is a right child.)z

NIL

q

NIL

Note: In this case, is and is NIL.y z x

x

y

RB-Trees: Deletion

Case has one (non-NIL) child.2: z

z

r

(WLOG assume is a right child.)z

q
q

NIL

r

RB-Trees: Deletion

Case has one (non-NIL) child.2: z

z

r

(WLOG assume is a right child.)z

q
q

NIL

r

y

RB-Trees: Deletion

Case has one (non-NIL) child.2: z

z

r

(WLOG assume is a right child.)z

q
q

NIL

r

x

y

RB-Trees: Deletion

Case has one (non-NIL) child.2: z

z

r

(WLOG assume is a right child.)z

q
q

NIL

r

x

y

Note: In this case, is and is the only child of .y z x z

RB-Trees: Deletion

Case a has two (non-NIL) children where its right child has no left child.3 : z

z

l

q

r

y

l

q

r

y

NIL

RB-Trees: Deletion

Case a has two (non-NIL) children where its right child has no left child.3 : z

z

l

q

r

y

l

q

r

y

NIL

 will take place of along

with its colour

r z

RB-Trees: Deletion

Case a has two (non-NIL) children where its right child has no left child.3 : z

z

l

q

r

y

l

q

r

y

NIL

RB-Trees: Deletion

Case a has two (non-NIL) children where its right child has no left child.3 : z

z

l

q

r

y

l

q

r

y

NIL

y

RB-Trees: Deletion

Case a has two (non-NIL) children where its right child has no left child.3 : z

z

l

q

r

y

l

q

r

y

NIL

x

y

RB-Trees: Deletion

Case a has two (non-NIL) children where its right child has no left child.3 : z

z

l

q

r

y

l

q

r

y

NIL

x

Note: In this case, is the successor of and is either NIL or the only child of .y z x y

y

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

l r

u

v

q

NIL

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

l r

u

v

q

 will take

place of

along with

its colour

u
z

NIL

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

Replace with s subtreeu v′￼

l r

u

v

q

 will take

place of

along with

its colour

u
z

NIL

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

l r

u

v

q

NIL

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

l r

u

v

q

y

NIL

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

l r

u

v

q

x

y

NIL

RB-Trees: Deletion
Case b has two (non-NIL) children where its right child has a left child.3 : z

z

l r

u

v

q

l r

u

v

q

x

Note: In this case, is the successor of and is either NIL or the only child of .y z x y

y

NIL

RB-Trees: Deletion

RB-Trees: Deletion

Let be the node we want to delete:z

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 3: Else, will be the successor of and will be ’s only non-NIL child or NIL.y z x y

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 3: Else, will be the successor of and will be ’s only non-NIL child or NIL.y z x y

Skeleton for Deletion:

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 3: Else, will be the successor of and will be ’s only non-NIL child or NIL.y z x y

Skeleton for Deletion:

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

• Find and .y x

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 3: Else, will be the successor of and will be ’s only non-NIL child or NIL.y z x y

Skeleton for Deletion:

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

• Find and .y x

• If it’s Case 3, replace with .z y

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 3: Else, will be the successor of and will be ’s only non-NIL child or NIL.y z x y

Skeleton for Deletion:

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

• Find and .y x

• If it’s Case 3, replace with .z y

• Remove .y

RB-Trees: Deletion

Let be the node we want to delete:z

• Case 2: If has exactly one (non-NIL) child, then and will be ’s only non-NIL child.z y = z x y

• Case 3: Else, will be the successor of and will be ’s only non-NIL child or NIL.y z x y

Skeleton for Deletion:

• Case 1: If has no (non-NIL) child, then and will be NIL.z y = z x

• Find and .y x

• If it’s Case 3, replace with .z y

• Remove .y

• Start fix ups from depending on the colour of .x y

