Lecture 6

Red-Black Trees: Insertion, Deletion

Source: Introduction to Algorithms, CLRS
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Fix-up will be enough to terminate the process
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Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.
® |f parent of z is red, we do fix-ups for the following cases:

® Case l: 7's uncle (sibling of 7's parent) is red.

® Case 2: Z's uncle is black and z is a right child. } +~_We will see the fix ups assuming

, . , , parent of z is a left child.
® Case 3: 7's uncle is black and z is a left child.

® |f parent of z does not exist, make z black and exit.
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\ Make z's
5 8
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Case 1: 7's uncle (sibling of z's parent) is red.

¥ 7's uncle

Set 7 to its grandpa
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Case 2: 7Z's uncle is black and z is a right child.

Set 7 to its parent and
Left-rotate(7, 2)
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Black height is disturbed,

z's grandparent’s parent might be red

\

Case 3: 7Z's uncle is black and z is a left child.

11

Colour 7's parent to black and

z's grandparent to red
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Black height is disturbed,
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Case 3: 7Z's uncle is black and z is a left child.

Colour 7's parent to black and

z's grandparent to red
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Case 3: 7Z's uncle is black and z is a left child.

Colour 7's parent black and
z's grandparent red and
Right-rotate(7,z.p.p)
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y will be the node we will “actually” be taking out
and whether fix ups are require will depend on the colour of y
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Two stages of deletion:

® Delete the node as we do in a BST.

® Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let's recall deletion in a BST and spot special nodes, y and x.

\

Fix ups will start from x after removing y



Recall Deletion in BSTs




Recall Deletion in BSTs

Let 7z be the node we want to delete.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

e Case 1l: 7 has no children.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

e Case 1l: 7 has no children.

® Case 2: 7 has only single child.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: z has no children.
® Case 2: 7 has only single child.

e Case 3: 7 has two children.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: 7 has no children. —

Easy
e Case 2: 7 has only single child. «—

e Case 3: 7 has two children.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: 7 has no children. —

Easy
e Case 2: 7 has only single child. «—

e Case 3: 7 has two Chi\dren.q\

Not so easy
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Note: In this case, y is z and x is NIL.
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Case 2: 7 has one (non-NIL) child. (WLOG assume 7 is a right child.)

Note: In this case, vy is z and x is the only child of z.
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Case 3b: 7 has two (non-NIL) children where its right child has a left child.

Note: In this case, y is the successor of z and x is either NIL or the only child of y.
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Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.

Skeleton for Deletion:

® Find y and x.

o |fit's Case 3, replace z with y.
® Remove y.

® Start fix ups from x depending on the colour of y.



