Lecture 6

Red-Black Trees: Insertion, Deletion

Source: Introduction to Algorithms, CLRS



RB-Trees: Insertion Cases



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,

® |f parent of z is black, nothing needs to be done.



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.

® |f parent of z is red, we do fix-ups for the following cases:



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.
® |f parent of z is red, we do fix-ups for the following cases:

® Case l: 7's uncle (sibling of 7's parent) is red.



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.
® |f parent of z is red, we do fix-ups for the following cases:

® Case l: 7's uncle (sibling of 7's parent) is red.

® Case 2: 7's uncle is black and z is a right child.



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.
® |f parent of z is red, we do fix-ups for the following cases:

® Case l: 7's uncle (sibling of 7's parent) is red.
® Case 2: 7's uncle is black and z is a right child.

® Case 3: Z's uncle is black and 7 is a left child.



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.

® |f parent of z is red, we do fix-ups for the following cases:
After doing local fix-up, z

e Case 1: 7's uncle (sibling of 7's parent) is red. «— willsetto its parent's parent.

® Case 2: 7's uncle is black and z is a right child.

® Case 3: Z's uncle is black and 7 is a left child.



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.

® |f parent of z is red, we do fix-ups for the following cases:
After doing local fix-up, z

e Case 1: 7's uncle (sibling of 7's parent) is red. «— willsetto its parent's parent.

~—

® Case 2: 7's uncle is black and z is a right child.

e Case 3: 7's uncle is black and 7 is a left child. Gets converted to Case 3



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.

® |f parent of z is red, we do fix-ups for the following cases:
After doing local fix-up, z

e Case 1: 7's uncle (sibling of 7's parent) is red. «— willsetto its parent's parent.

~—

® Case 2: 7's uncle is black and z is a right child.

e Case 3: 7's uncle is black and 7 is a left child. Gets converted to Case 3

N\

Fix-up will be enough to terminate the process



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.
® |f parent of z is red, we do fix-ups for the following cases:

® Case l: 7's uncle (sibling of 7's parent) is red.
® Case 2: 7's uncle is black and z is a right child.

® Case 3: Z's uncle is black and 7 is a left child.

® |f parent of z does not exist, make z black and exit.



RB-Trees: Insertion Cases

Let z be the newly inserted node with colour red. Then,
® |f parent of z is black, nothing needs to be done.
® |f parent of z is red, we do fix-ups for the following cases:

® Case l: 7's uncle (sibling of 7's parent) is red.

® Case 2: Z's uncle is black and z is a right child. } +~_We will see the fix ups assuming

, . , , parent of z is a left child.
® Case 3: 7's uncle is black and z is a left child.

® |f parent of z does not exist, make z black and exit.



RB-Trees: Insertion Case 1



RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.



RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.

3 7's uncle



RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.

3 7's uncle



RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.

3 7's uncle




RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.

3 7's uncle

X \/

Make z's parent, uncle black



RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.

7 15

\ Make z's
5 8
grandpa red
X \/

Make z's parent, uncle black

3 7's uncle



RB-Trees: Insertion Case 1

Case 1: 7's uncle (sibling of z's parent) is red.

¥ 7's uncle

Set 7 to its grandpa



RB-Trees: Insertion Case 2

Case 2: 7Z's uncle is black and z is a right child.




RB-Trees: Insertion Case 2

Case 2: 7Z's uncle is black and z is a right child.




RB-Trees: Insertion Case 2

Case 2: 7Z's uncle is black and z is a right child.




RB-Trees: Insertion Case 2

Case 2: 7Z's uncle is black and z is a right child.

Set 7 to its parent and
Left-rotate(7, 2)




RB-Trees: Insertion Case 2

Case 2: 7Z's uncle is black and z is a right child.

Set 7 to its parent and
Left-rotate(7, 2)




RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.




RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.




RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.




RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.

/

Colour 7's parent to black and

15



RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.

Colour 7's parent to black and

z's grandparent to red



RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.

Colour 7's parent to black and

z's grandparent to red




RB-Trees: Insertion Case 3 o
Black height is disturbed,

z's grandparent’s parent might be red

\

Case 3: 7Z's uncle is black and z is a left child.

11

Colour 7's parent to black and

z's grandparent to red




RB-Trees: Insertion Case 3 o
Black height is disturbed,

z's grandparent’s parent might be red

\

O @

Case 3: 7Z's uncle is black and z is a left child.

Colour 7's parent to black and

z's grandparent to red



RB-Trees: Insertion Case 3

Case 3: 7Z's uncle is black and z is a left child.

Colour 7's parent black and
z's grandparent red and
Right-rotate(7,z.p.p)



RB-Trees: Deletion



RB-Trees: Deletion

Two stages of deletion:



RB-Trees: Deletion

Two stages of deletion:

® Delete the node as we do in a BST.



RB-Trees: Deletion

Two stages of deletion:

® Delete the node as we do in a BST.

® Do fix-ups as deletion may cause a violation of a few Red-blue properties.



RB-Trees: Deletion

Two stages of deletion:

® Delete the node as we do in a BST.

® Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let's recall deletion in a BST and spot special nodes, y and x.

\



RB-Trees: Deletion

Two stages of deletion:

® Delete the node as we do in a BST.

® Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let's recall deletion in a BST and spot special nodes, y and x.

\

y will be the node we will “actually” be taking out
and whether fix ups are require will depend on the colour of y



RB-Trees: Deletion

Two stages of deletion:

® Delete the node as we do in a BST.

® Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let's recall deletion in a BST and spot special nodes, y and x.

\

Fix ups will start from x after removing y



Recall Deletion in BSTs




Recall Deletion in BSTs

Let 7z be the node we want to delete.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

e Case 1l: 7 has no children.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

e Case 1l: 7 has no children.

® Case 2: 7 has only single child.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: z has no children.
® Case 2: 7 has only single child.

e Case 3: 7 has two children.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: 7 has no children. —

Easy
e Case 2: 7 has only single child. «—

e Case 3: 7 has two children.



Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: 7 has no children. —

Easy
e Case 2: 7 has only single child. «—

e Case 3: 7 has two Chi\dren.q\

Not so easy



RB-Trees: Deletion

Case 1: 7 has no (non-NIL) children. (WLOG assume z is a right child.)




RB-Trees: Deletion

Case 1: 7 has no (non-NIL) children. (WLOG assume z is a right child.)




RB-Trees: Deletion

Case 1: 7 has no (non-NIL) children. (WLOG assume z is a right child.)




RB-Trees: Deletion

Case 1: 7 has no (non-NIL) children. (WLOG assume z is a right child.)

Note: In this case, y is z and x is NIL.



RB-Trees: Deletion

Case 2: 7 has one (non-NIL) child. (WLOG assume 7 is a right child.)




RB-Trees: Deletion

Case 2: 7 has one (non-NIL) child. (WLOG assume 7 is a right child.)




RB-Trees: Deletion

Case 2: 7 has one (non-NIL) child. (WLOG assume 7 is a right child.)




RB-Trees: Deletion

Case 2: 7 has one (non-NIL) child. (WLOG assume 7 is a right child.)

Note: In this case, vy is z and x is the only child of z.



RB-Trees: Deletion

Case 3a: 7 has two (non-NIL) children where its right child has no left child.




RB-Trees: Deletion

Case 3a: 7 has two (non-NIL) children where its right child has no left child.

r will take place of z along
with its colour




RB-Trees: Deletion

Case 3a: 7 has two (non-NIL) children where its right child has no left child.




RB-Trees: Deletion

Case 3a: 7 has two (non-NIL) children where its right child has no left child.




RB-Trees: Deletion

Case 3a: 7 has two (non-NIL) children where its right child has no left child.




RB-Trees: Deletion

Case 3a: 7 has two (non-NIL) children where its right child has no left child.

Note: In this case, y is the successor of z and x is either NIL or the only child of y.



RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.




RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.

u will take

place of
along with
its colour




RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.

u will take

place of
along with
its colour




RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.




RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.




RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.




RB-Trees: Deletion

Case 3b: 7 has two (non-NIL) children where its right child has a left child.

Note: In this case, y is the successor of z and x is either NIL or the only child of y.



RB-Trees: Deletion



RB-Trees: Deletion

Let 7z be the node we want to delete:



RB-Trees: Deletion

Let 7z be the node we want to delete:

® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.

Skeleton for Deletion:



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.

Skeleton for Deletion:

® Find y and x.



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.

Skeleton for Deletion:

® Find y and x.

o |fit's Case 3, replace z with y.



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.

Skeleton for Deletion:
® Find y and x.
o |fit's Case 3, replace z with y.

® Remove y.



RB-Trees: Deletion

Let 7z be the node we want to delete:
® Case 1: If z has no (non-NIL) child, then y = z and x will be NIL.

® Case 2: It 7 has exactly one (non-NIL) child, then y = z and x will be y’'s only non-NIL child.

® Case 3: Else, y will be the successor of z and x will be y's only non-NIL child or NIL.

Skeleton for Deletion:

® Find y and x.

o |fit's Case 3, replace z with y.
® Remove y.

® Start fix ups from x depending on the colour of y.



