
Lecture 6

Red-Black Trees: Insertion, Deletion

Source: Introduction to Algorithms, CLRS
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Let  be the newly inserted node with colour red. Then,z

• If parent of  is black, nothing needs to be done.z

• If parent of  is red, we do fix-ups for the following cases:z

• Case : ’s uncle (sibling of ’s parent ) is red.


• Case : ’s uncle is black and  is a right child.


• Case : ’s uncle is black and  is a left child.

1 z z

2 z z

3 z z

• If parent of  does not exist, make  black and exit.z z

We will see the fix ups assuming 

parent of  is a left child. z



RB-Trees: Insertion Case 1



RB-Trees: Insertion Case 1
Case : ’s uncle (sibling of ’s parent ) is red.1 z z



RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent ) is red.1 z z

14

z

’s unclez



RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent ) is red.1 z z

14

z

’s unclez



RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent ) is red.1 z z

14

11

2

1 157

5 8

4

14

z

’s unclez



RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent ) is red.1 z z

14

11

2

1 157

5 8

4

14

z

’s unclez

Make ’s parent, uncle blackz



RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent ) is red.1 z z

14

11

2

1 157

5 8

4

14

z

’s unclez

Make ’s parent, uncle blackz

Make ’s 

grandpa red

z



RB-Trees: Insertion Case 1

11

2

1 157

5 8

4

Case : ’s uncle (sibling of ’s parent ) is red.1 z z

14

11

2

1 157

5 8

4

14

z

z

’s unclez

Set  to its grandpaz



RB-Trees: Insertion Case 2
Case : ’s uncle is black and  is a right child.2 z z

11

2

1 157

5 8

4

14

z



RB-Trees: Insertion Case 2
Case : ’s uncle is black and  is a right child.2 z z

11

2

1 157

5 8

4

14

z



RB-Trees: Insertion Case 2
Case : ’s uncle is black and  is a right child.2 z z

11

2

1 157

5 8

4

14

z



RB-Trees: Insertion Case 2
Case : ’s uncle is black and  is a right child.2 z z

11

2

1 157

5 8

4

14

z

Set  to its parent and

Left-rotate
z

(T, z)



RB-Trees: Insertion Case 2
Case : ’s uncle is black and  is a right child.2 z z

11

2

1 157

5 8

4

14

z

11

2

1

15

7

5

8

4

14

z

Set  to its parent and

Left-rotate
z

(T, z)



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

11

2

1

15

7

5

8

4

14

z



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

11

2

1

15

7

5

8

4

14

z

Black height is disturbed, 
’s grandparent’s parent might be redz



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

Colour ’s parent to black andz
s grandparent to red z′￼

11

2

1

15

7

5

8

4

14

z

Black height is disturbed, 
’s grandparent’s parent might be redz



RB-Trees: Insertion Case 3
Case : ’s uncle is black and  is a left child.3 z z

11

2

1

15

7

5

8

4

14

z

112

1

15

7

5 8

4

14

z

Colour ’s parent black and

s grandparent red and 


Right-rotate

z
z′￼
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Two stages of deletion:

• Delete the node as we do in a BST.

• Do fix-ups as deletion may cause a violation of a few Red-blue properties.

Let’s recall deletion in a BST and spot special nodes,  and .y x

Fix ups will start from  after removing x y
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Let  be the node we want to delete.z Then, the following cases are possible:

• Case   has no children.1: z

• Case   has only single child.2: z

• Case   has two children.3: z

Easy

Not so easy
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Let  be the node we want to delete:z

• Case 2: If  has exactly one (non-NIL) child, then    and  will be ’s only non-NIL child.z y = z x y

• Case 3: Else,  will be the successor of  and  will be ’s only non-NIL child or NIL.y z x y

Skeleton for Deletion:

• Case 1: If  has no (non-NIL) child, then    and  will be NIL.z y = z x

• Find  and .y x

• If it’s Case 3, replace  with .z y

• Remove .y

• Start fix ups from  depending on the colour of .x y


