

Lecture 6

Red-Black Trees: Insertion, Deletion

Source: *Introduction to Algorithms*, CLRS

RB-Trees: Insertion Cases

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:
 - **Case 1:** z 's uncle (sibling of z 's parent) is **red**.

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:
 - **Case 1:** z 's uncle (sibling of z 's parent) is **red**.
 - **Case 2:** z 's uncle is **black** and z is a right child.

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:
 - **Case 1:** z 's uncle (sibling of z 's parent) is **red**.
 - **Case 2:** z 's uncle is **black** and z is a **right child**.
 - **Case 3:** z 's uncle is **black** and z is a **left child**.

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:
 - **Case 1:** z 's uncle (sibling of z 's parent) is **red**.
 - **Case 2:** z 's uncle is black and z is a right child.
 - **Case 3:** z 's uncle is black and z is a left child.

After doing local fix-up, z will set to its parent's parent.

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:

- **Case 1:** z 's uncle (sibling of z 's parent) is **red**.

After doing local fix-up, z will set to its parent's parent.

- **Case 2:** z 's uncle is **black** and z is a **right child**.

- **Case 3:** z 's uncle is **black** and z is a **left child**.

Gets converted to Case 3

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:

- **Case 1:** z 's uncle (sibling of z 's parent) is **red**.

After doing local fix-up, z will set to its parent's parent.

- **Case 2:** z 's uncle is **black** and z is a **right child**.

Gets converted to Case 3

- **Case 3:** z 's uncle is **black** and z is a **left child**.

Fix-up will be enough to terminate the process

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:
 - **Case 1:** z 's uncle (sibling of z 's parent) is **red**.
 - **Case 2:** z 's uncle is **black** and z is a **right child**.
 - **Case 3:** z 's uncle is **black** and z is a **left child**.
- If parent of z does not exist, make z **black** and **exit**.

RB-Trees: Insertion Cases

Let z be the newly inserted node with colour **red**. Then,

- If parent of z is **black**, nothing needs to be done.
- If parent of z is **red**, we do fix-ups for the following cases:
 - **Case 1:** z 's uncle (sibling of z 's parent) is **red**.
 - **Case 2:** z 's uncle is black and z is a right child.
 - **Case 3:** z 's uncle is black and z is a left child.
- If parent of z does not exist, make z black and exit.

We will see the fix ups assuming parent of z is a left child.

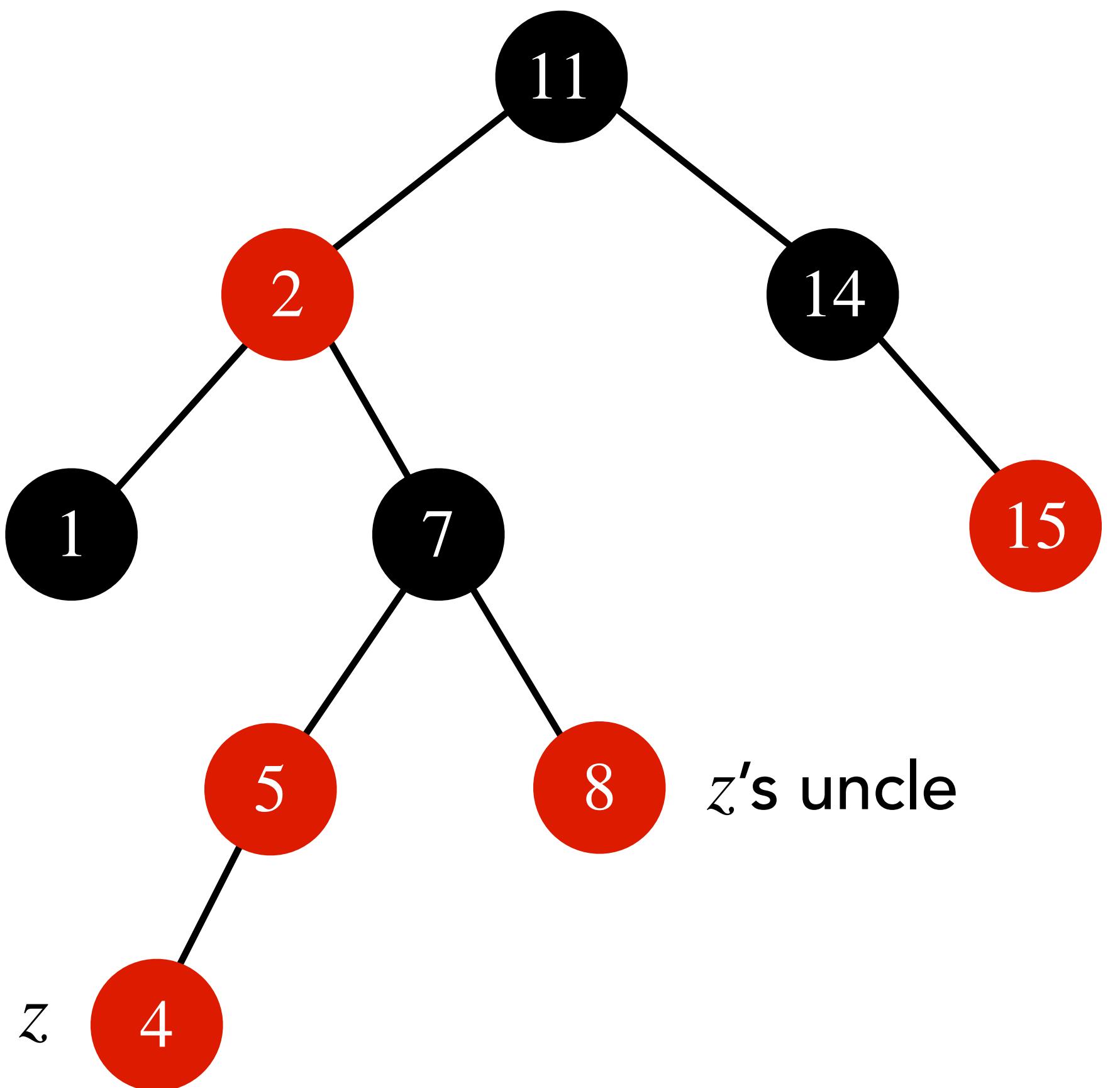
RB-Trees: Insertion Case 1

RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.

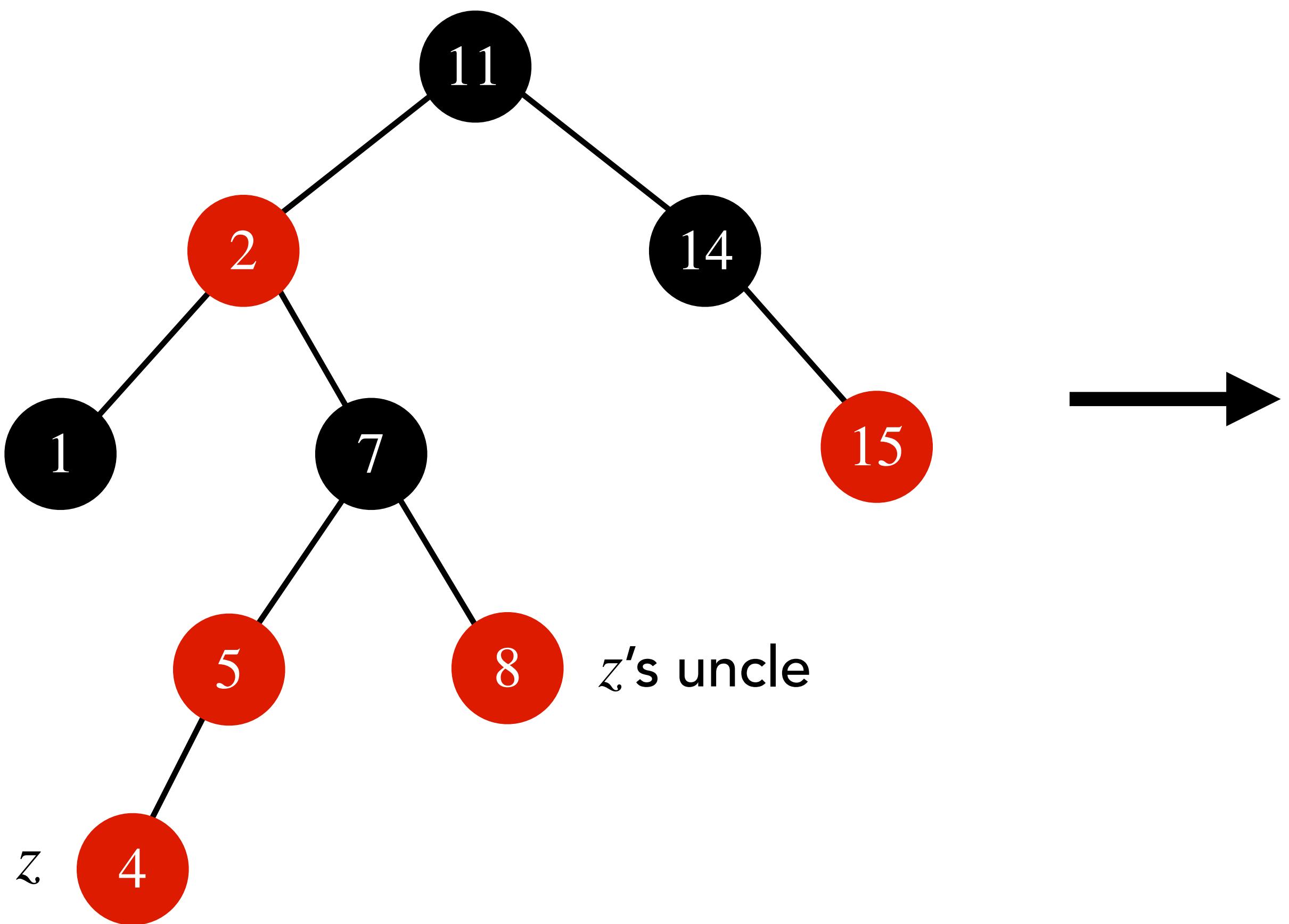
RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.



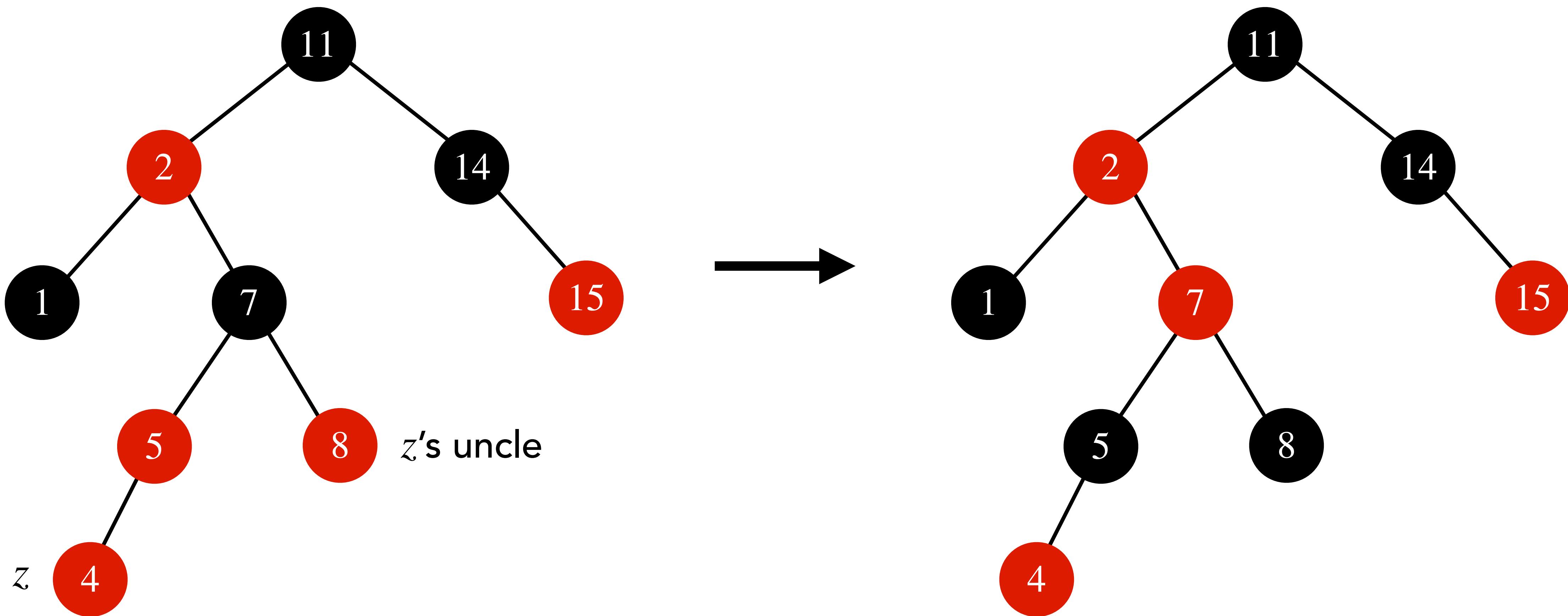
RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.



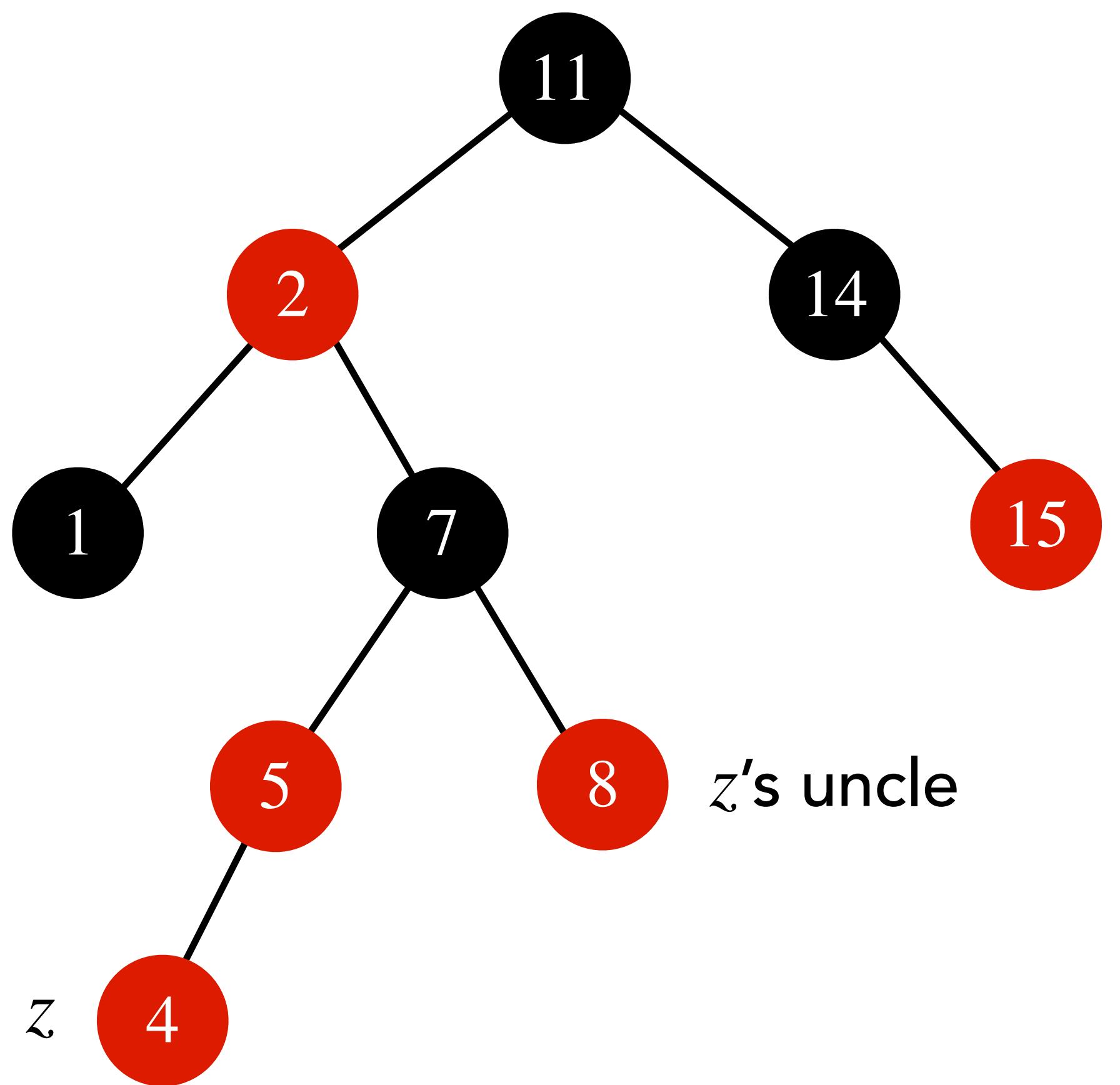
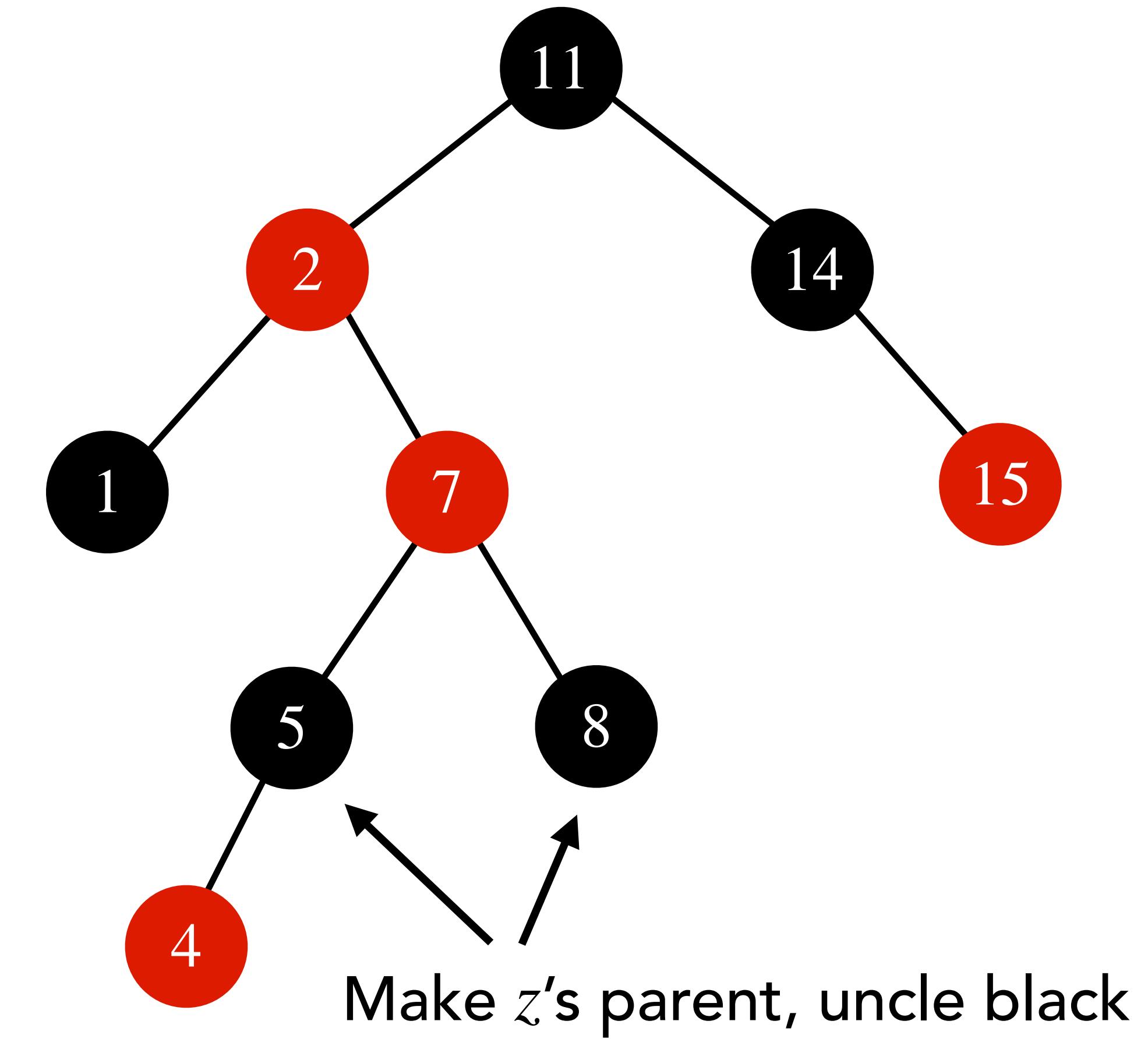
RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.



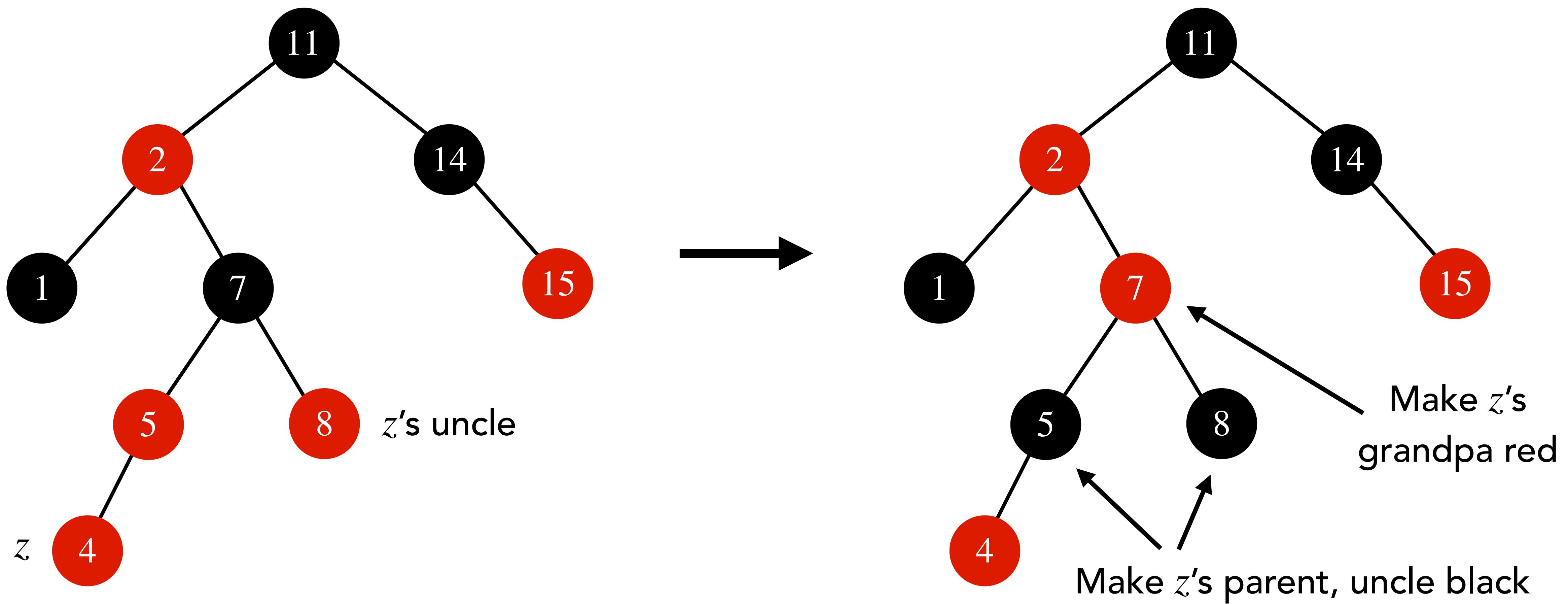
RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.



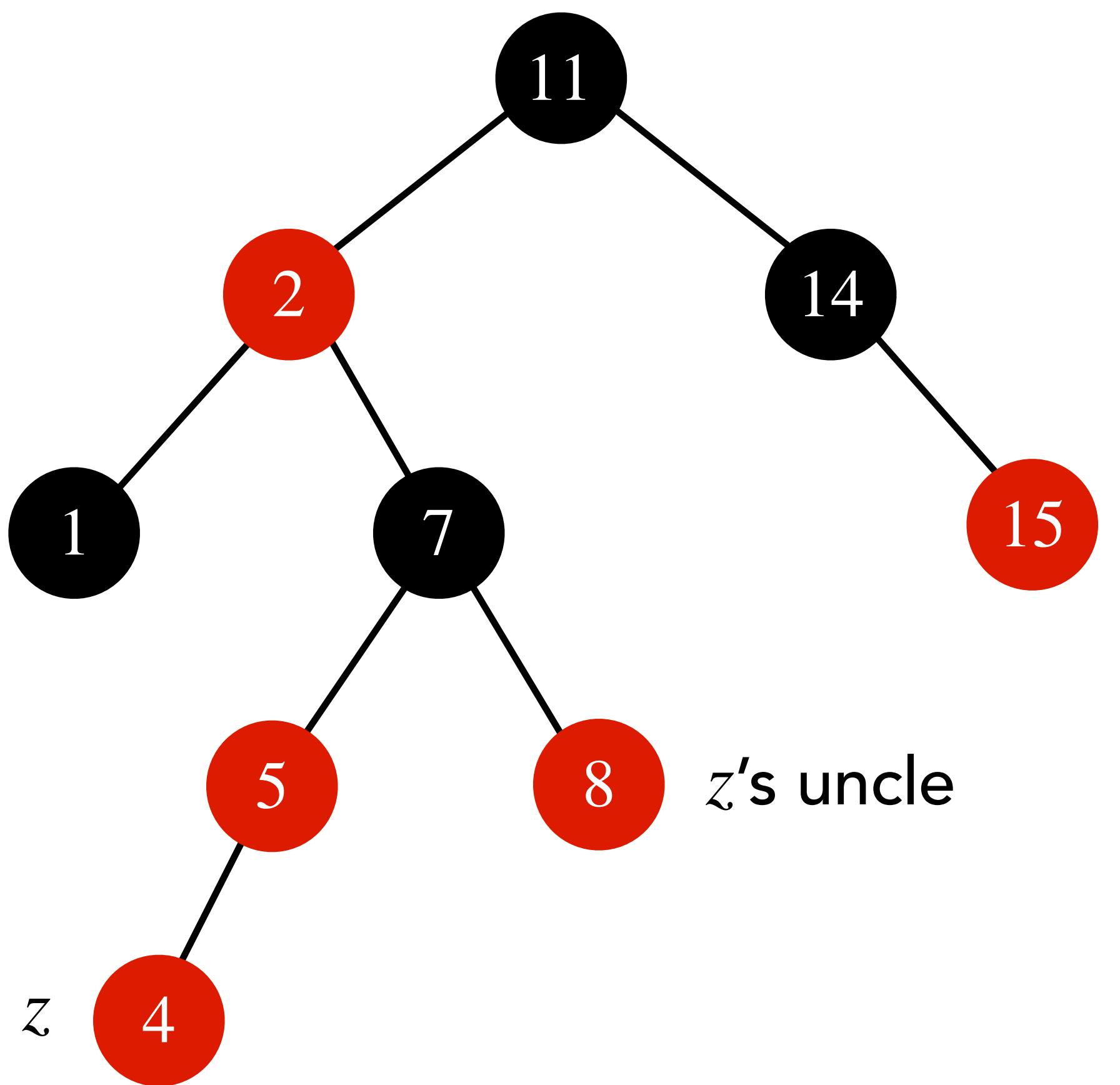
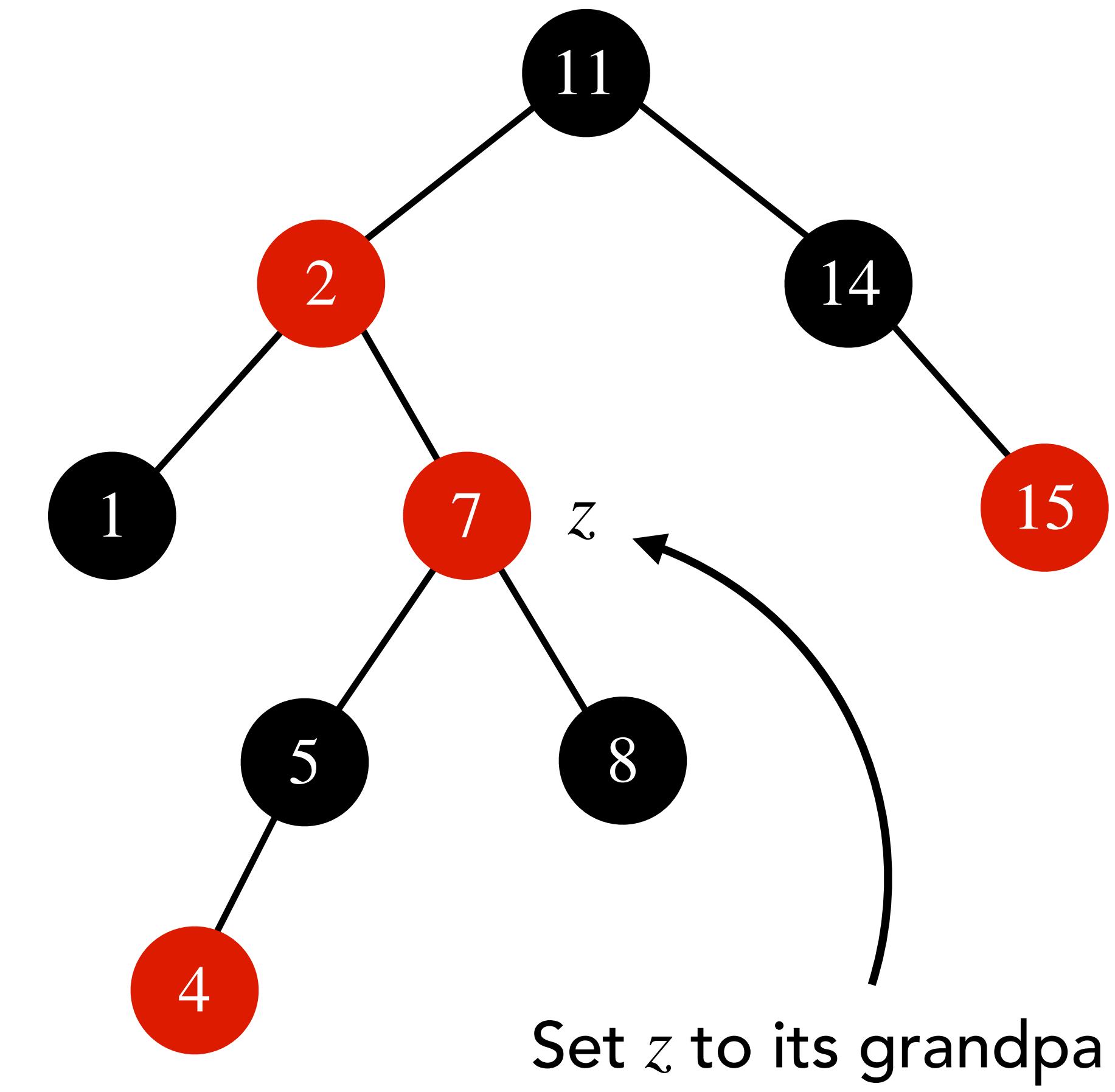
RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.



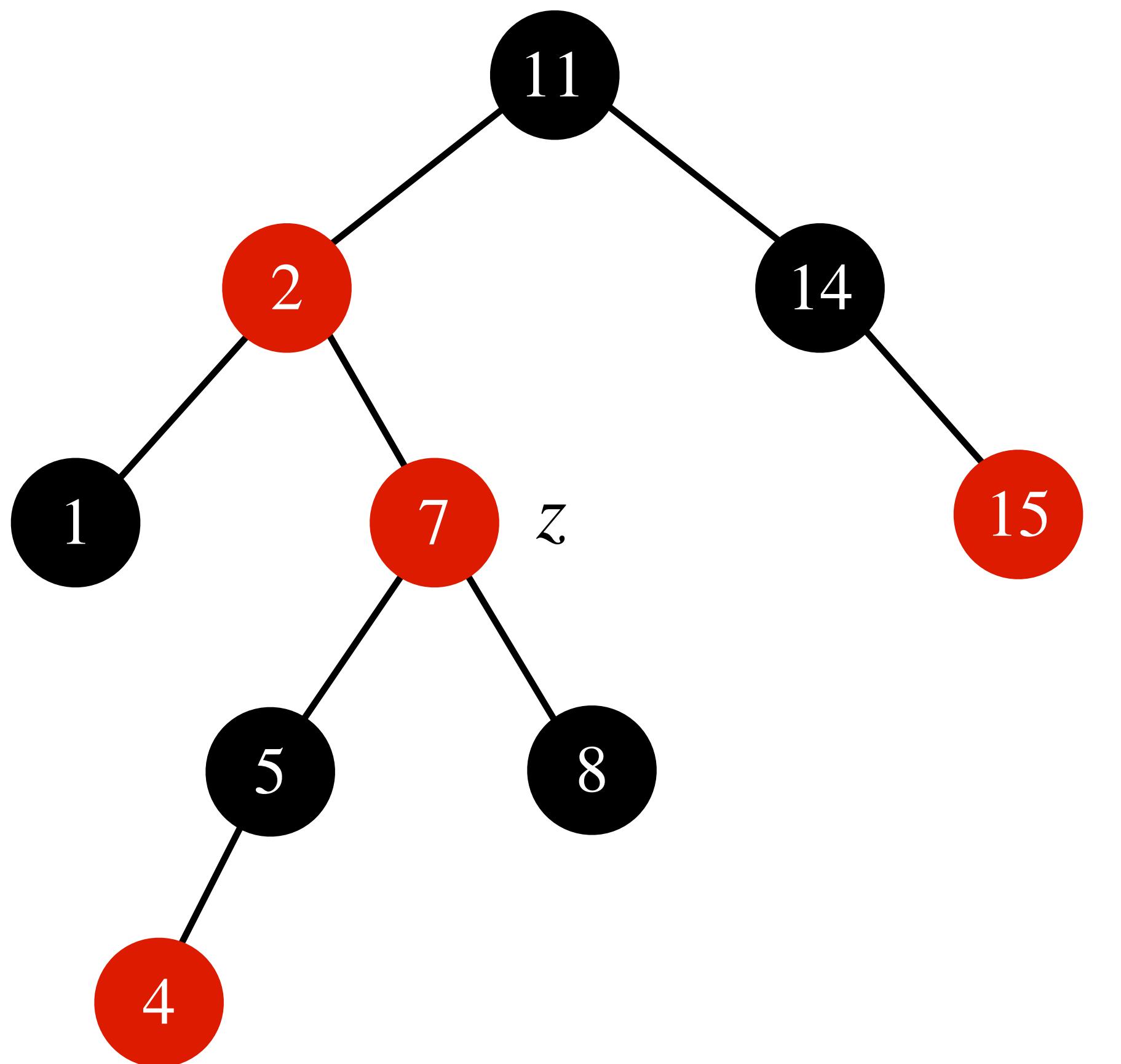
RB-Trees: Insertion Case 1

Case 1: z 's uncle (sibling of z 's parent) is red.



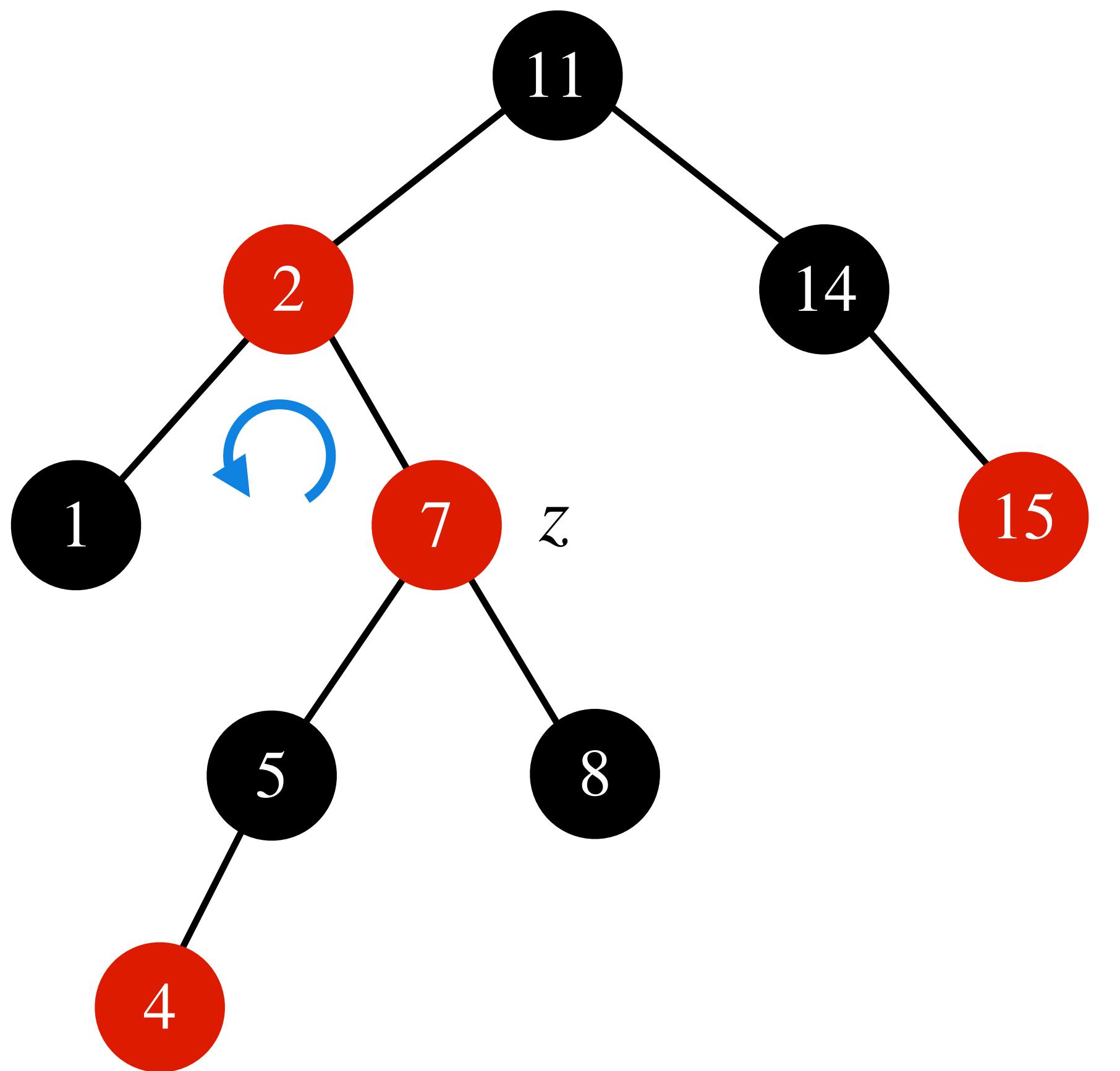
RB-Trees: Insertion Case 2

Case 2: z 's uncle is black and z is a right child.



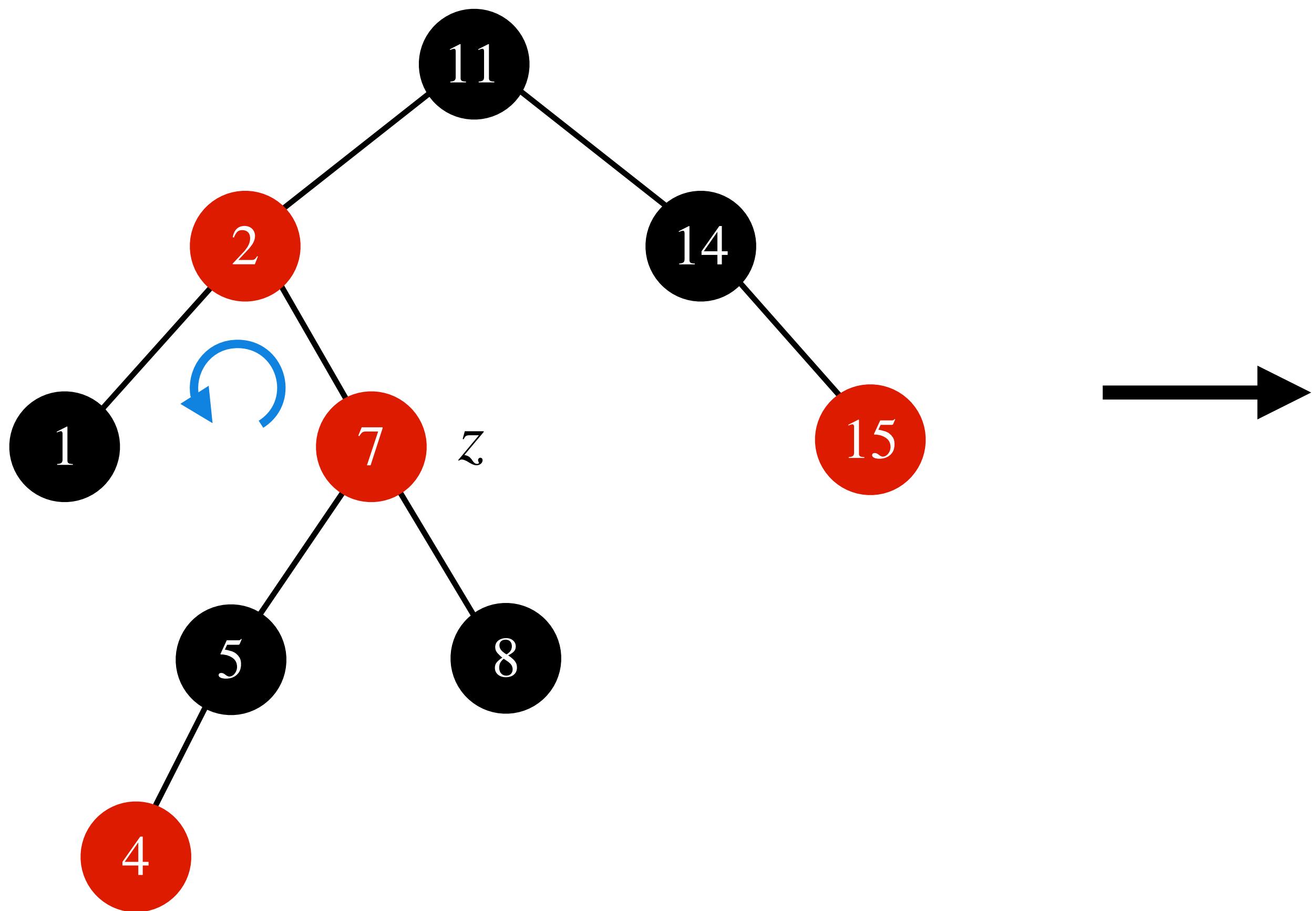
RB-Trees: Insertion Case 2

Case 2: z 's uncle is black and z is a right child.



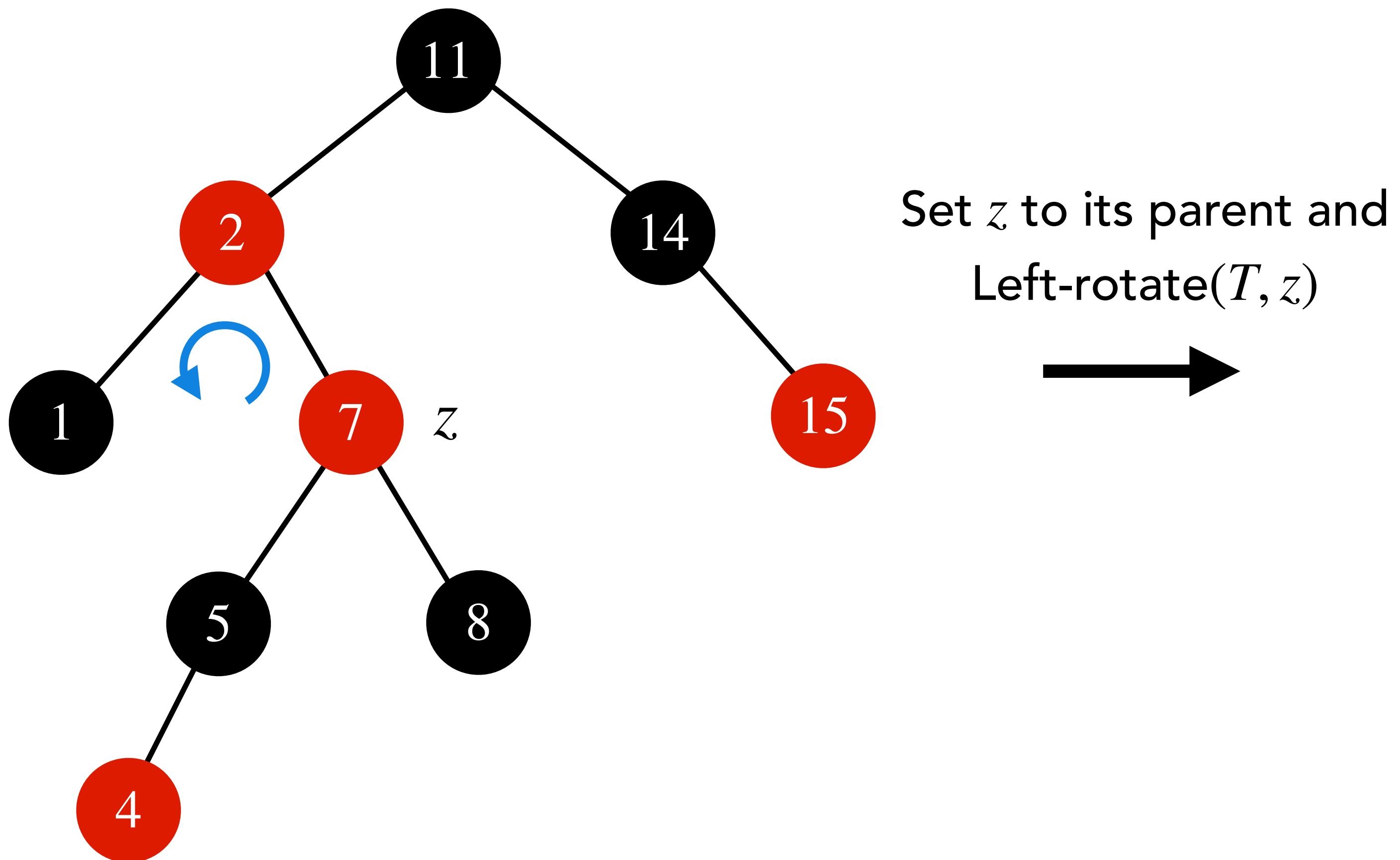
RB-Trees: Insertion Case 2

Case 2: z 's uncle is black and z is a right child.



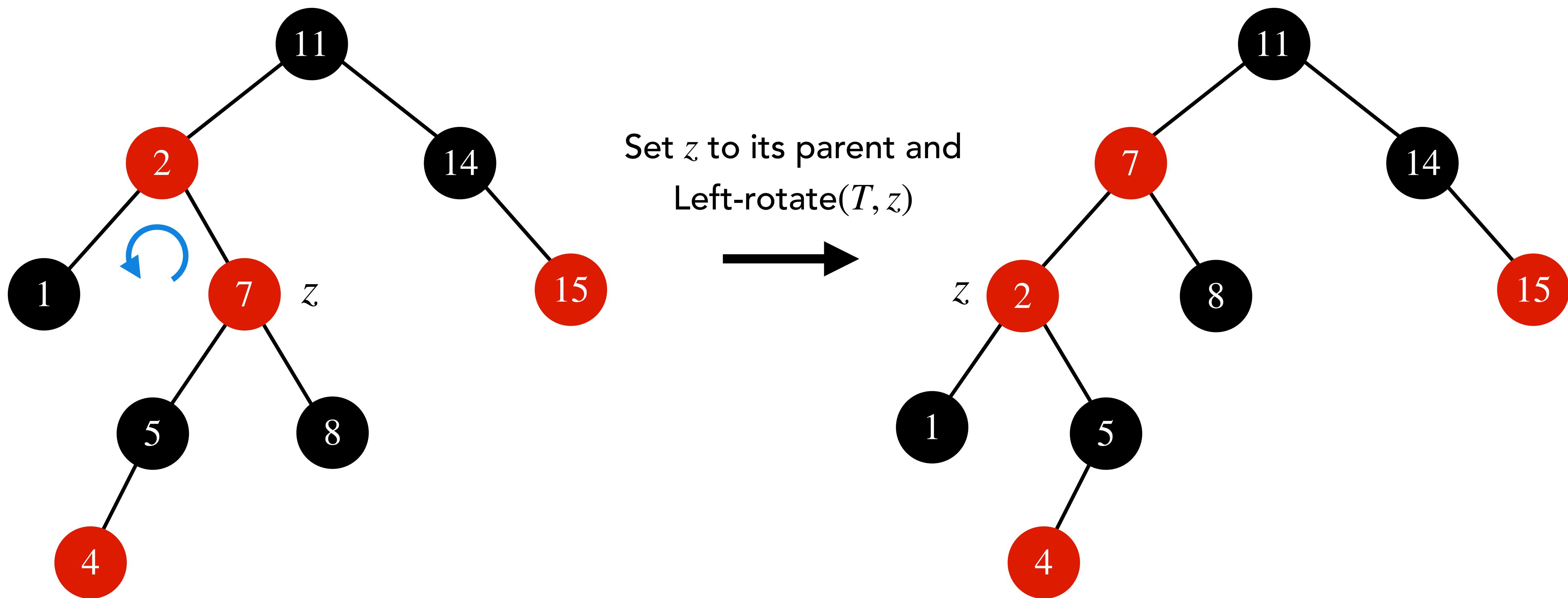
RB-Trees: Insertion Case 2

Case 2: z 's uncle is black and z is a right child.



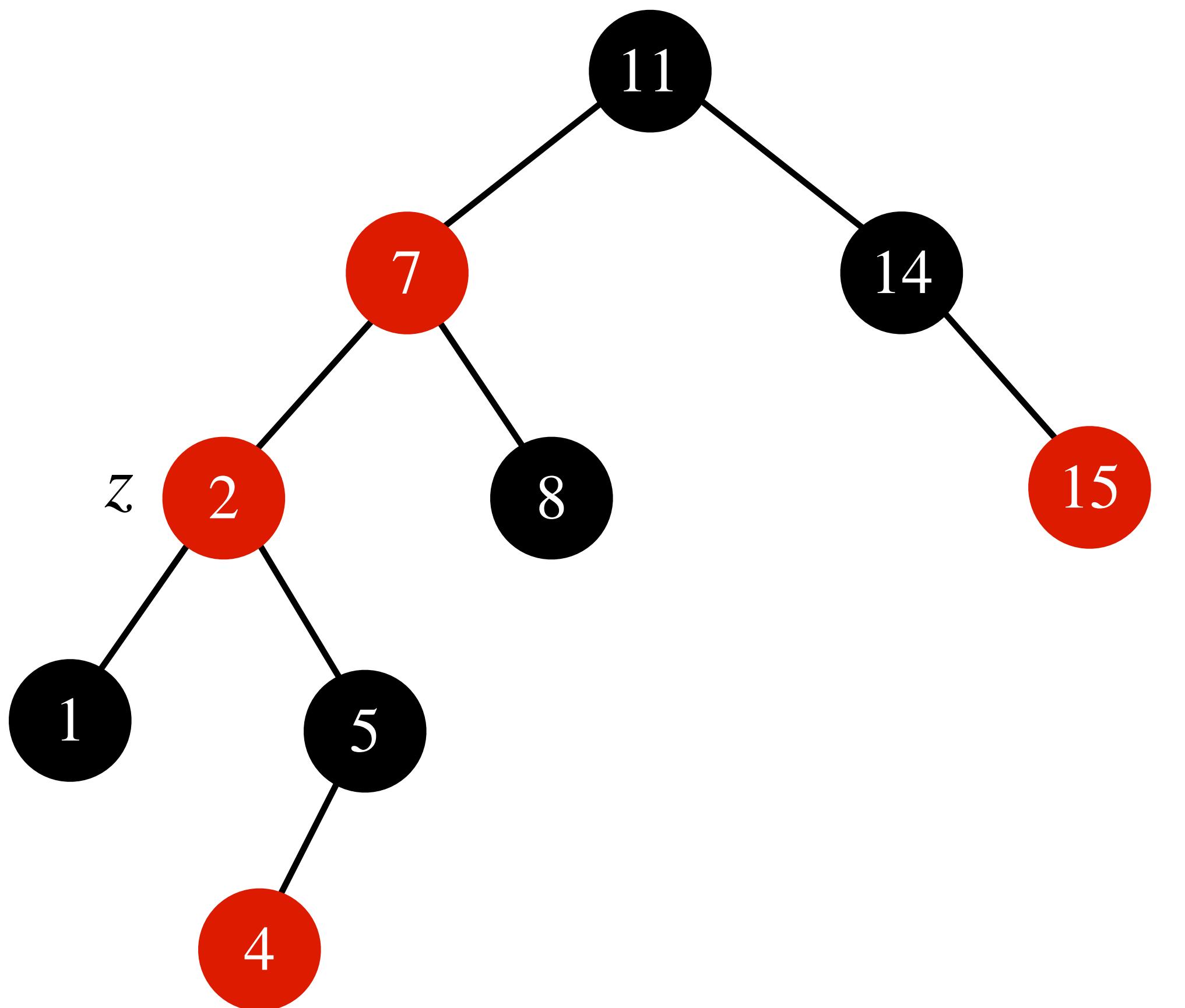
RB-Trees: Insertion Case 2

Case 2: z 's uncle is black and z is a right child.



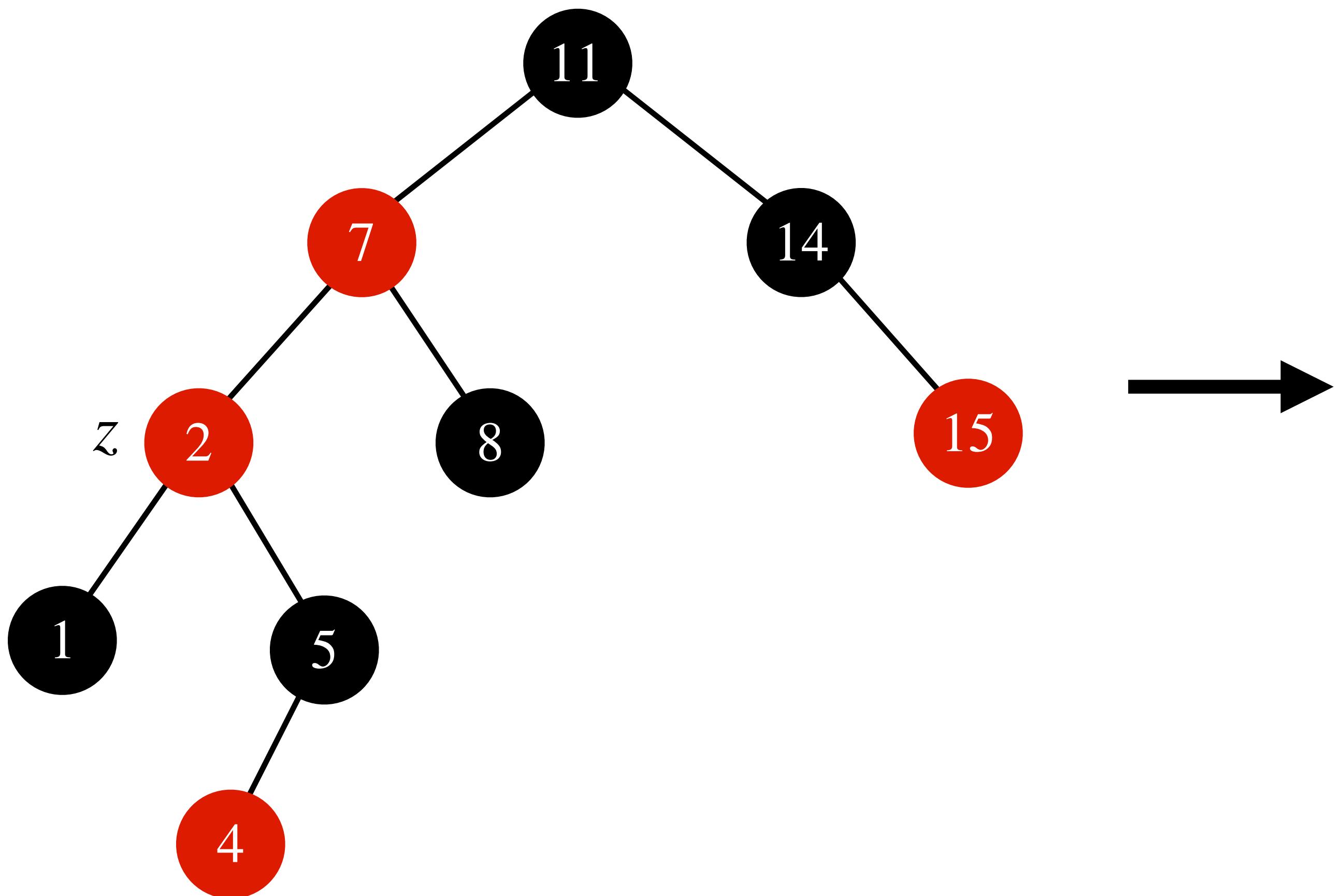
RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.



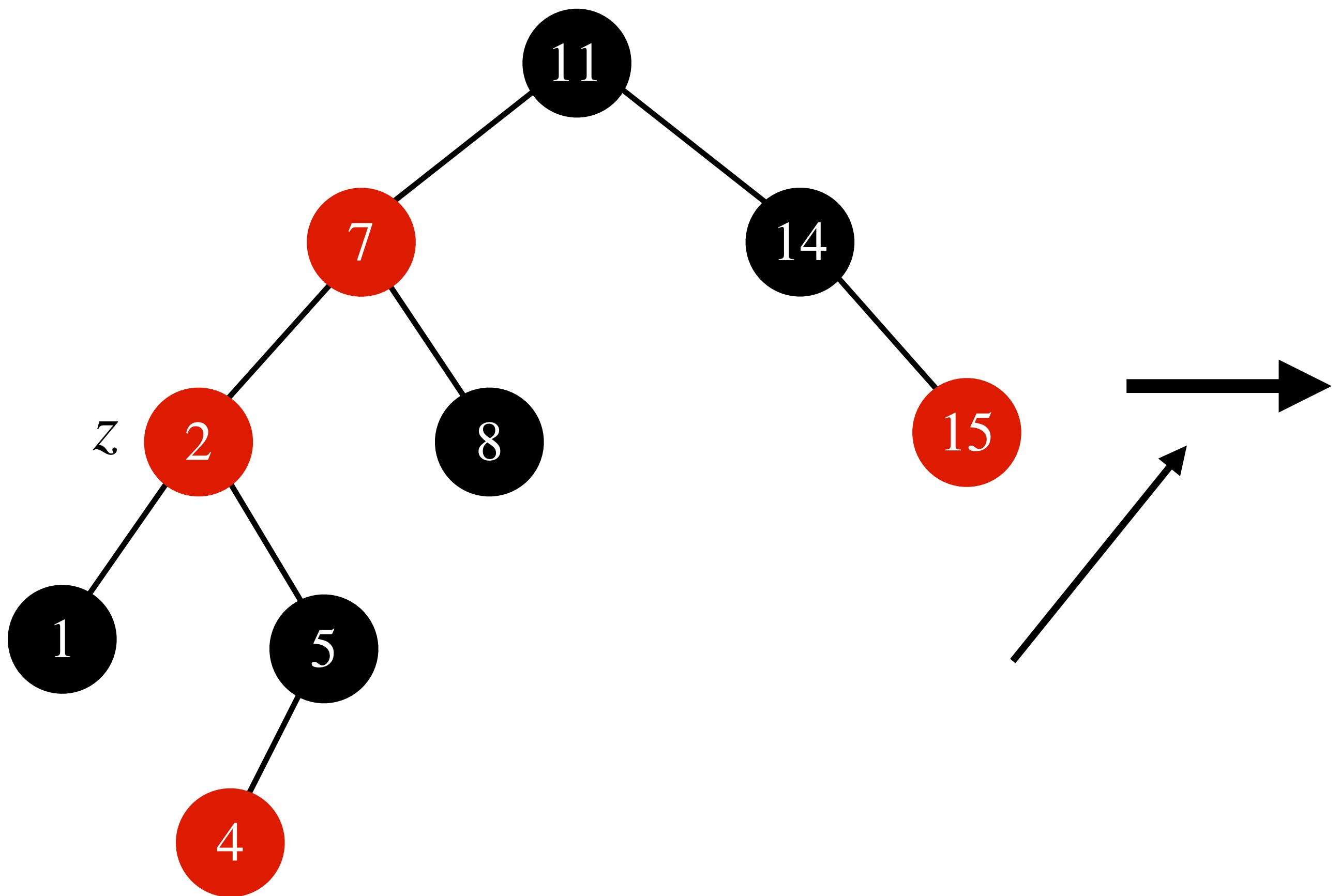
RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.



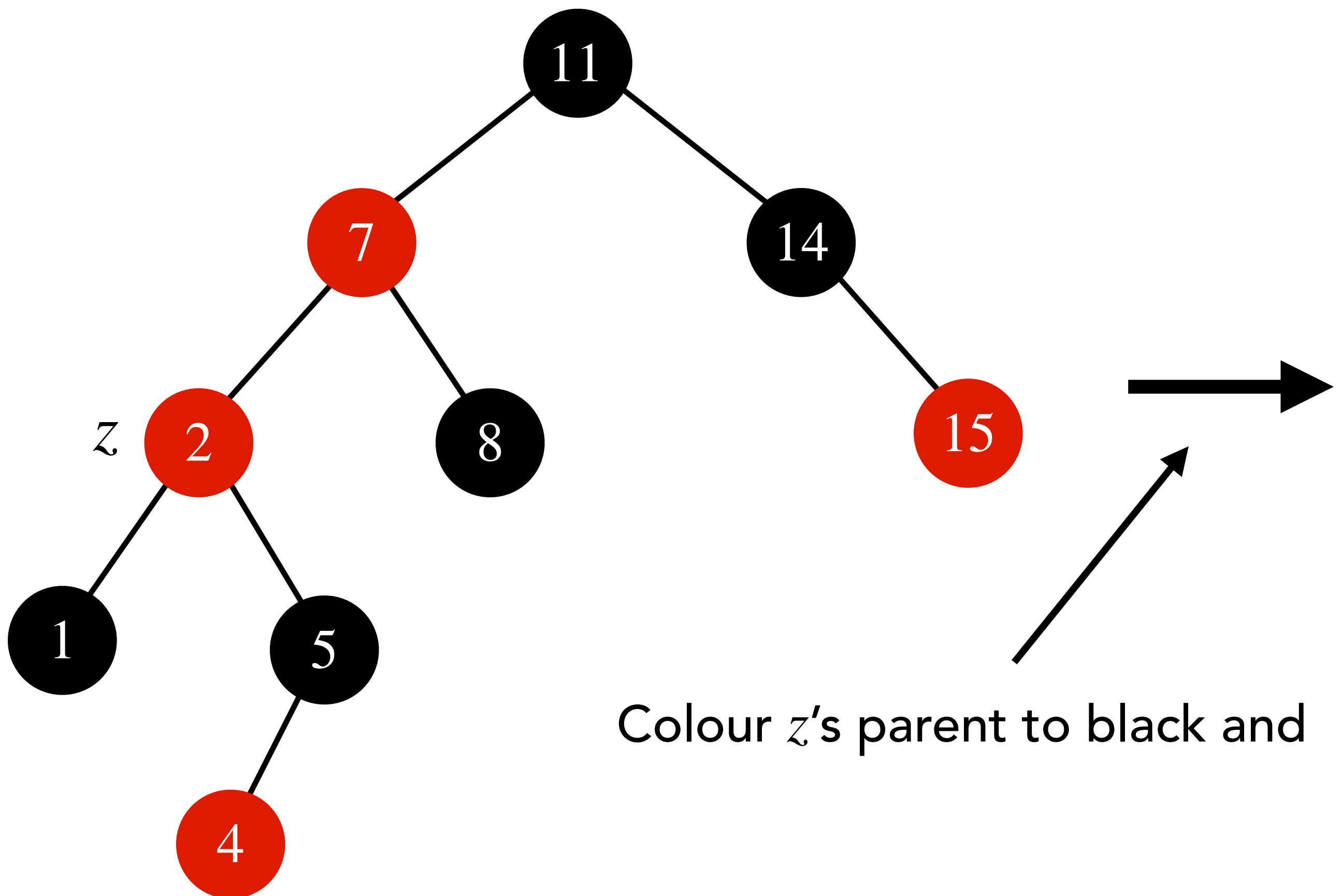
RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.



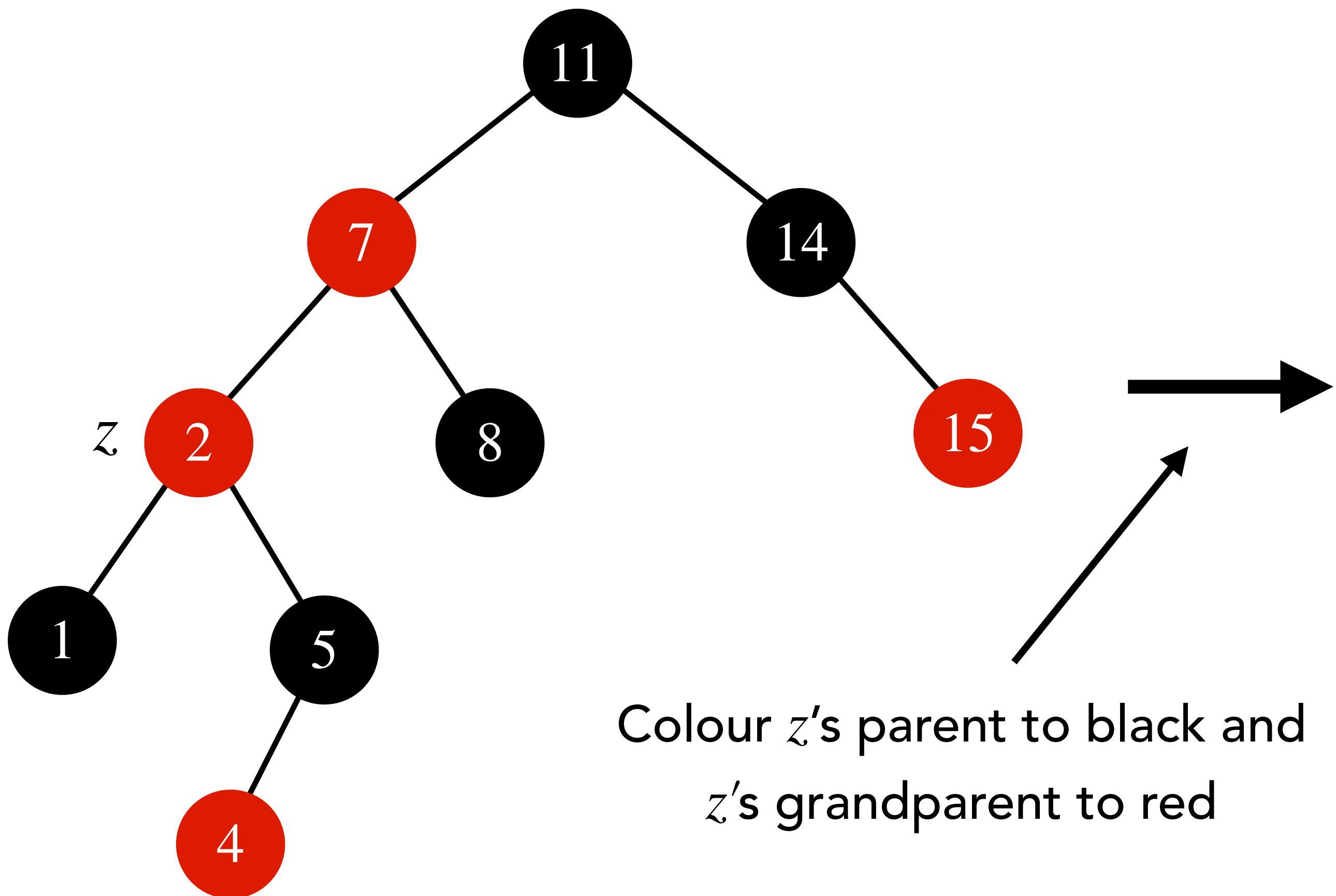
RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.



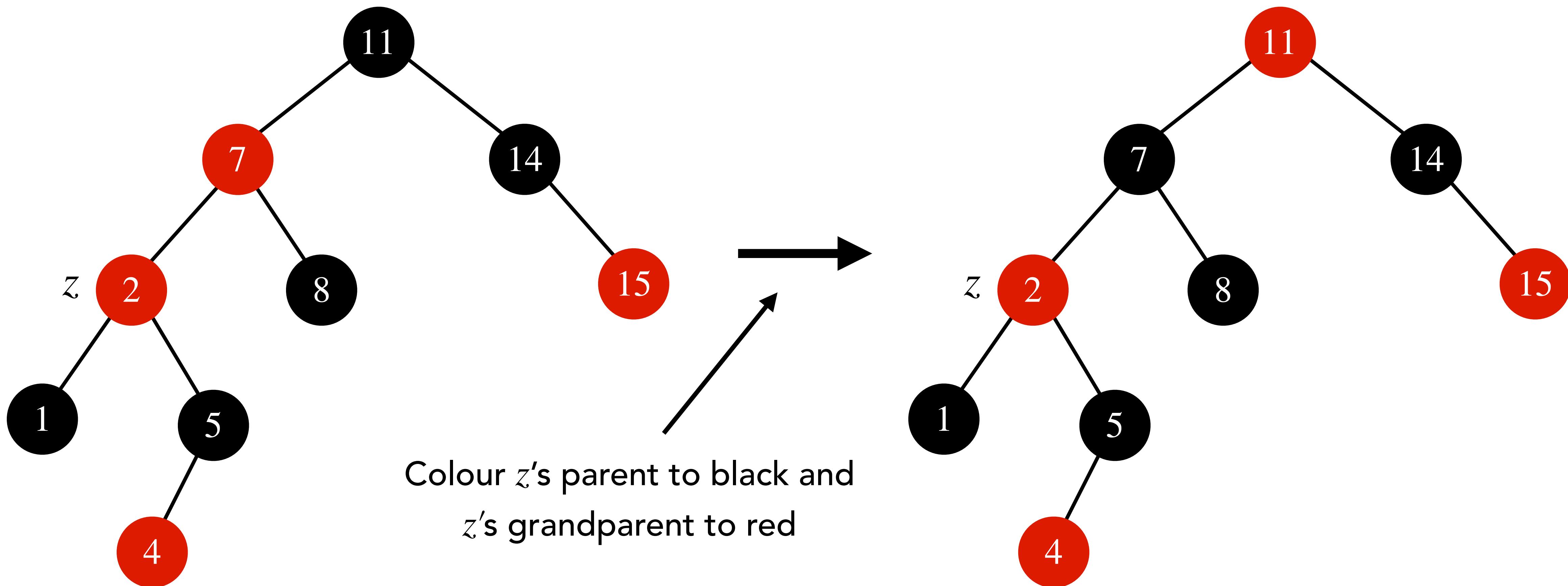
RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.



RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.

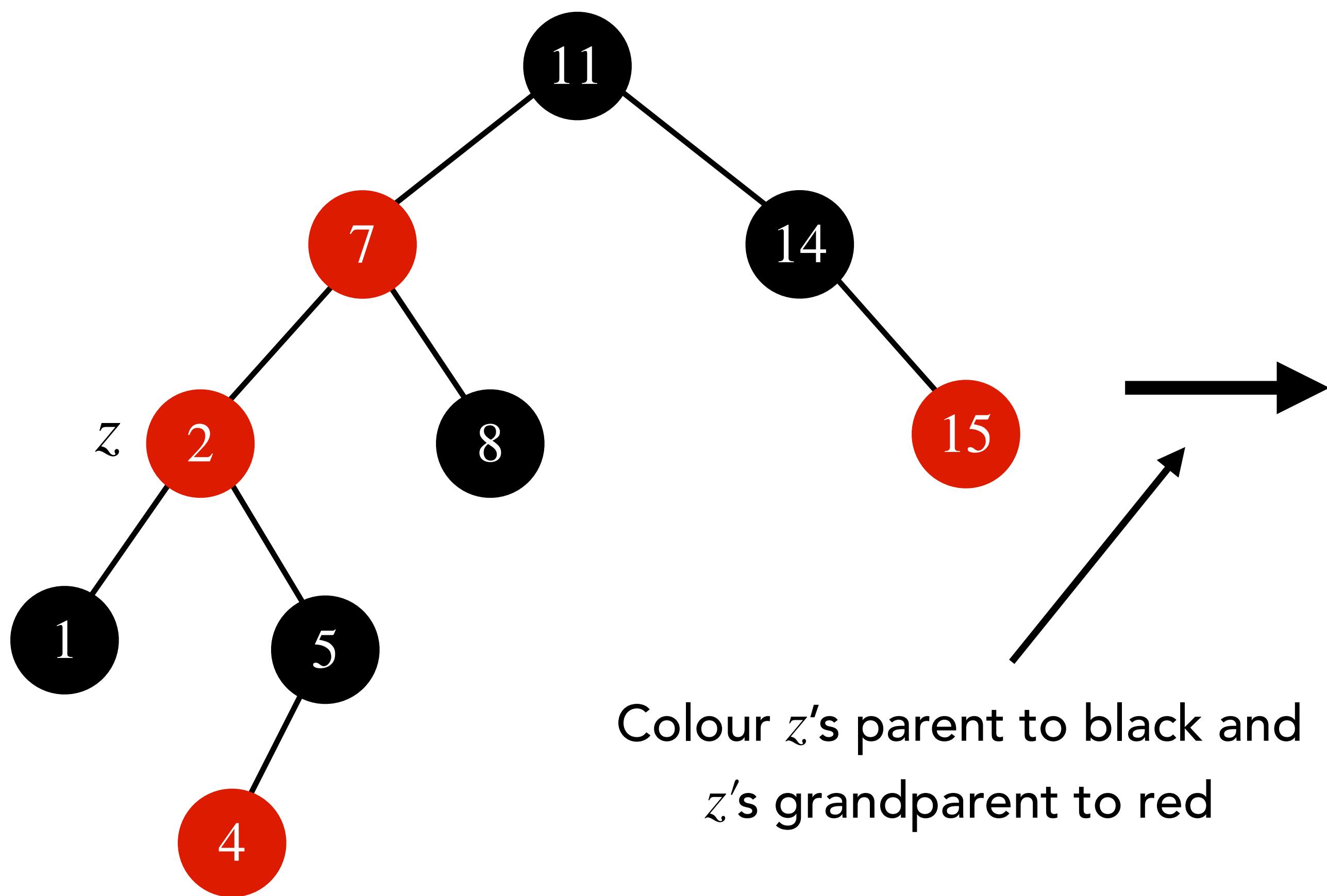


RB-Trees: Insertion Case 3

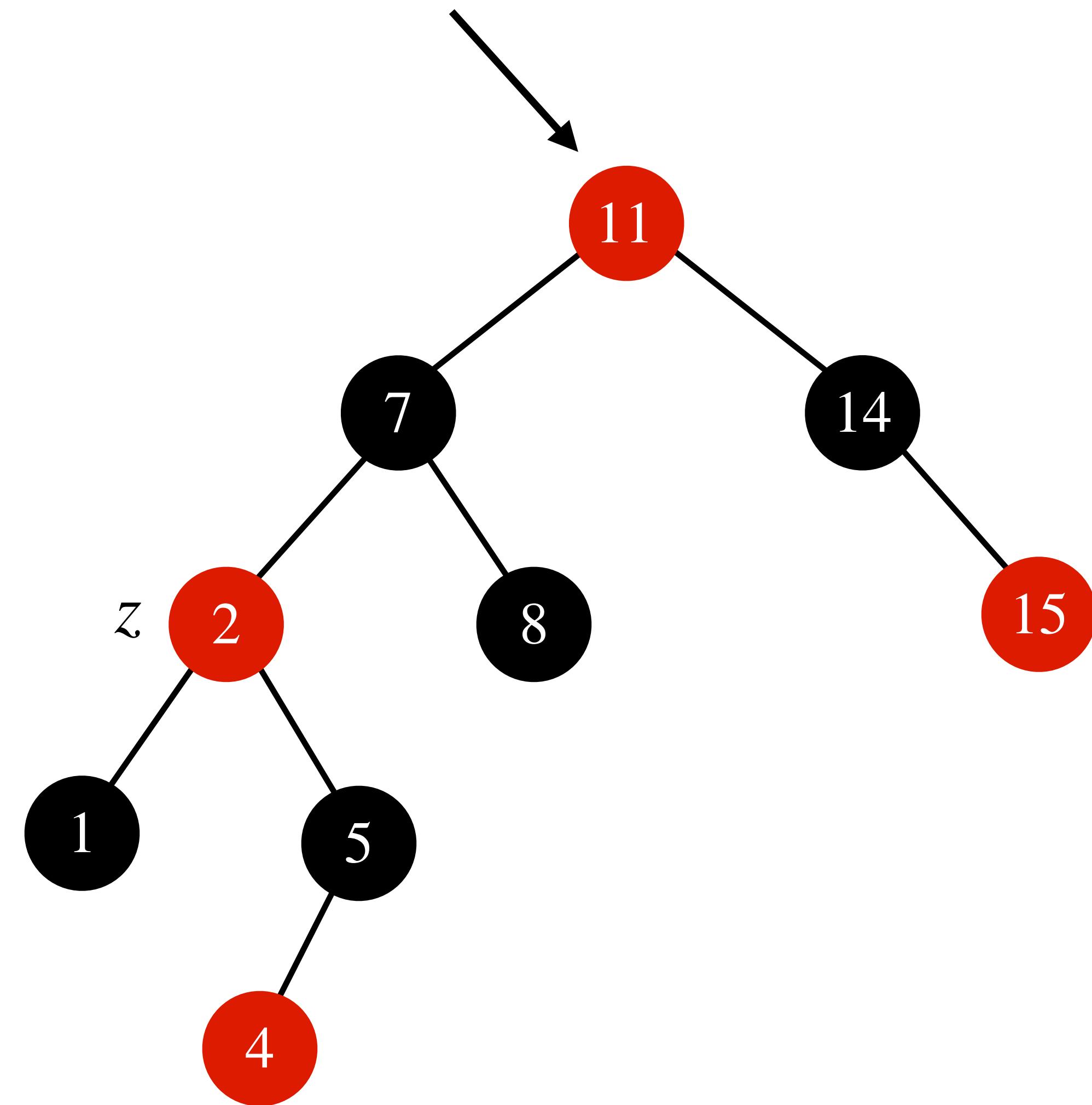
Case 3: z 's uncle is black and z is a left child.

Black height is disturbed,

z 's grandparent's parent might be red



Colour z 's parent to black and
 z 's grandparent to red

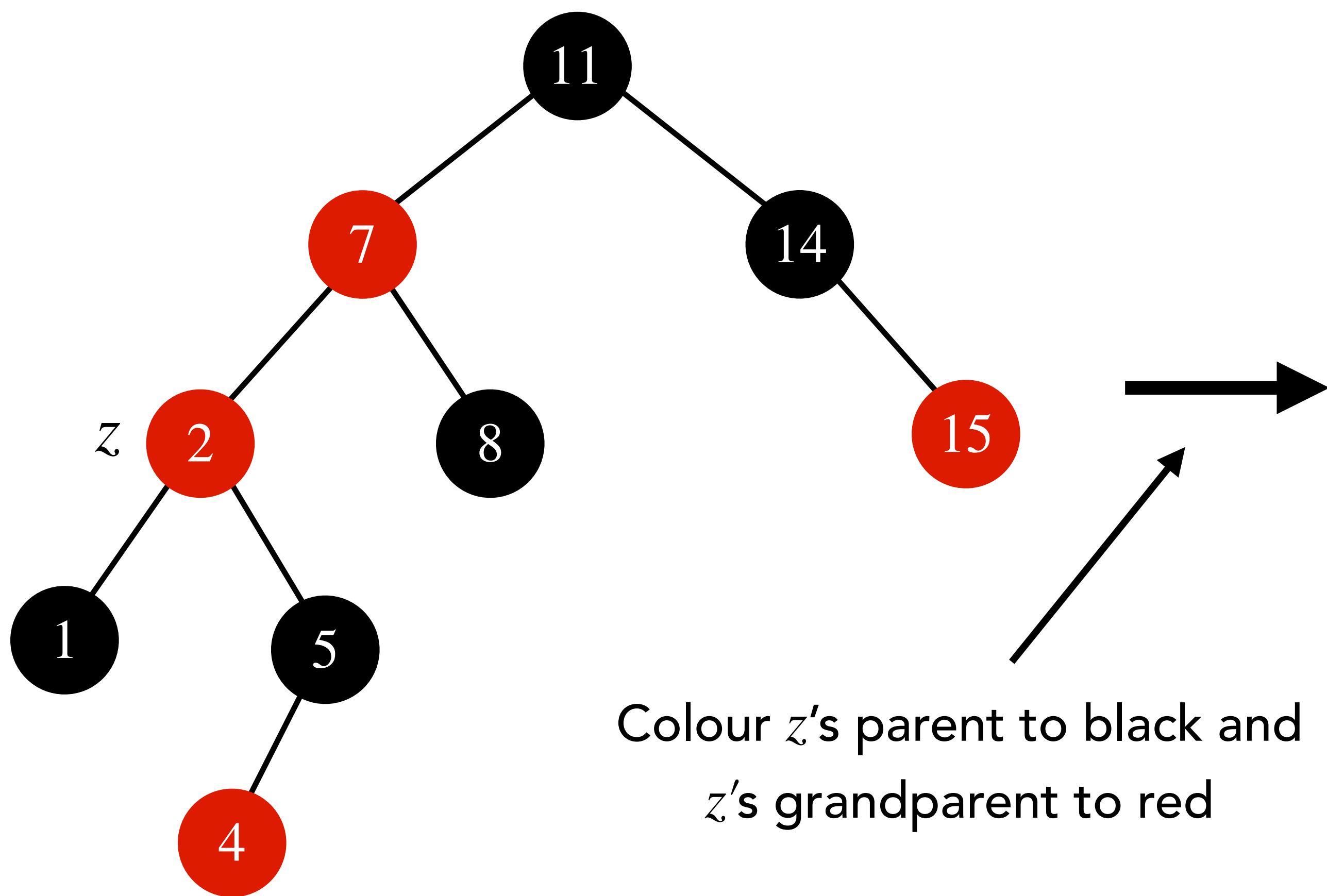


RB-Trees: Insertion Case 3

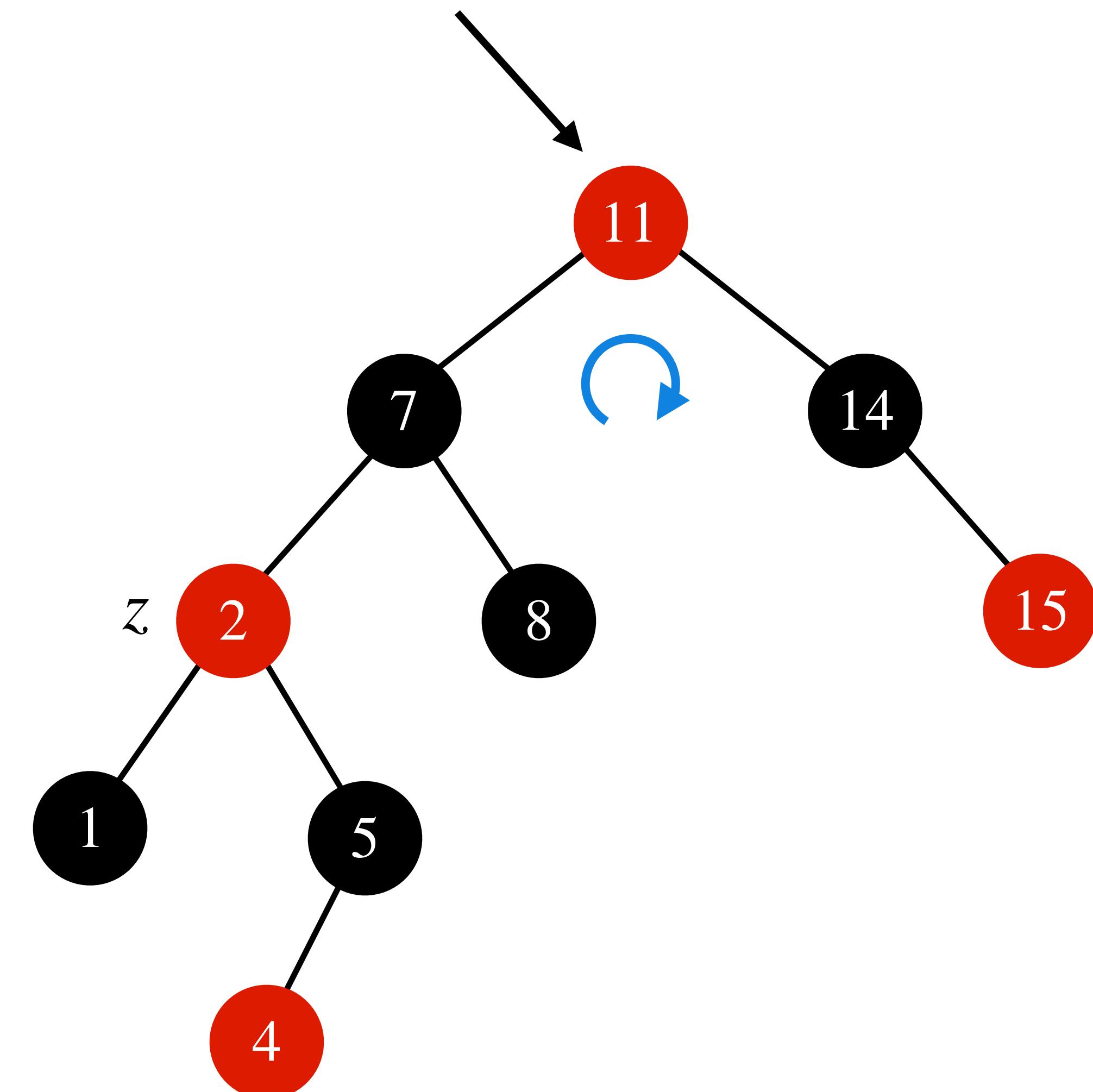
Case 3: z 's uncle is black and z is a left child.

Black height is disturbed,

z 's grandparent's parent might be red

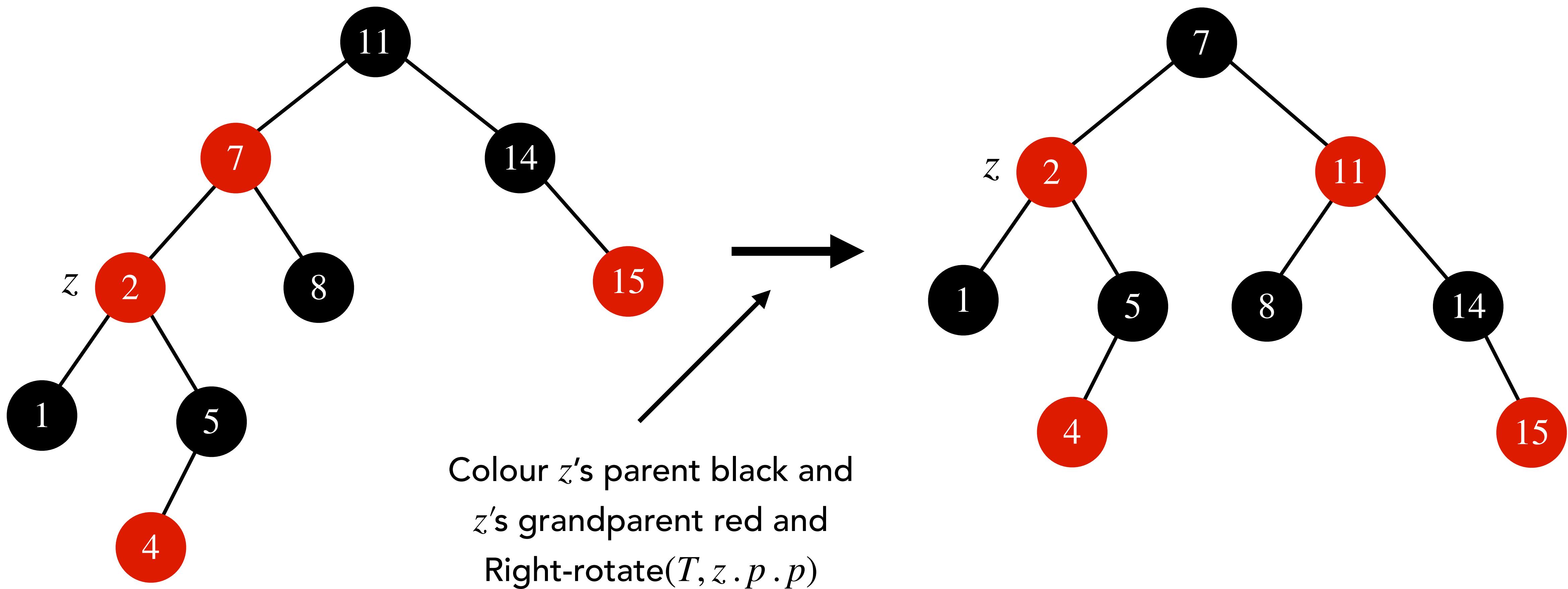


Colour z 's parent to black and
 z 's grandparent to red



RB-Trees: Insertion Case 3

Case 3: z 's uncle is black and z is a left child.



RB-Trees: Deletion

RB-Trees: Deletion

Two stages of deletion:

RB-Trees: Deletion

Two stages of deletion:

- Delete the node as we do in a BST.

RB-Trees: Deletion

Two stages of deletion:

- Delete the node as we do in a BST.
- Do fix-ups as **deletion** may cause a **violation** of a few Red-blue properties.

RB-Trees: Deletion

Two stages of deletion:

- Delete the node as we do in a BST.
- Do fix-ups as **deletion** may cause a **violation** of a few Red-blue properties.

Let's recall **deletion** in a BST and **spot special nodes**, y and x .

RB-Trees: Deletion

Two stages of deletion:

- Delete the node as we do in a BST.
- Do fix-ups as **deletion** may cause a **violation** of a few Red-blue properties.

Let's recall **deletion** in a BST and **spot special nodes**, ***y*** and ***x***.

y will be the node we will “actually” be taking out
and whether fix ups are required will depend on the colour of *y*

RB-Trees: Deletion

Two stages of deletion:

- Delete the node as we do in a BST.
- Do fix-ups as **deletion** may cause a **violation** of a few Red-blue properties.

Let's recall **deletion** in a BST and **spot special nodes**, y and x .

Fix ups will start from x after removing y

Recall Deletion in BSTs

Recall Deletion in BSTs

Let z be the node we want to delete.

Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

- **Case 1:** z has no children.

Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

- **Case 1:** z has no children.
- **Case 2:** z has only single child.

Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

- **Case 1:** z has no children.
- **Case 2:** z has only single child.
- **Case 3:** z has two children.

Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

- **Case 1:** z has no children.
- **Case 2:** z has only single child.
- **Case 3:** z has two children.

Easy

Recall Deletion in BSTs

Let z be the node we want to delete. Then, the following cases are possible:

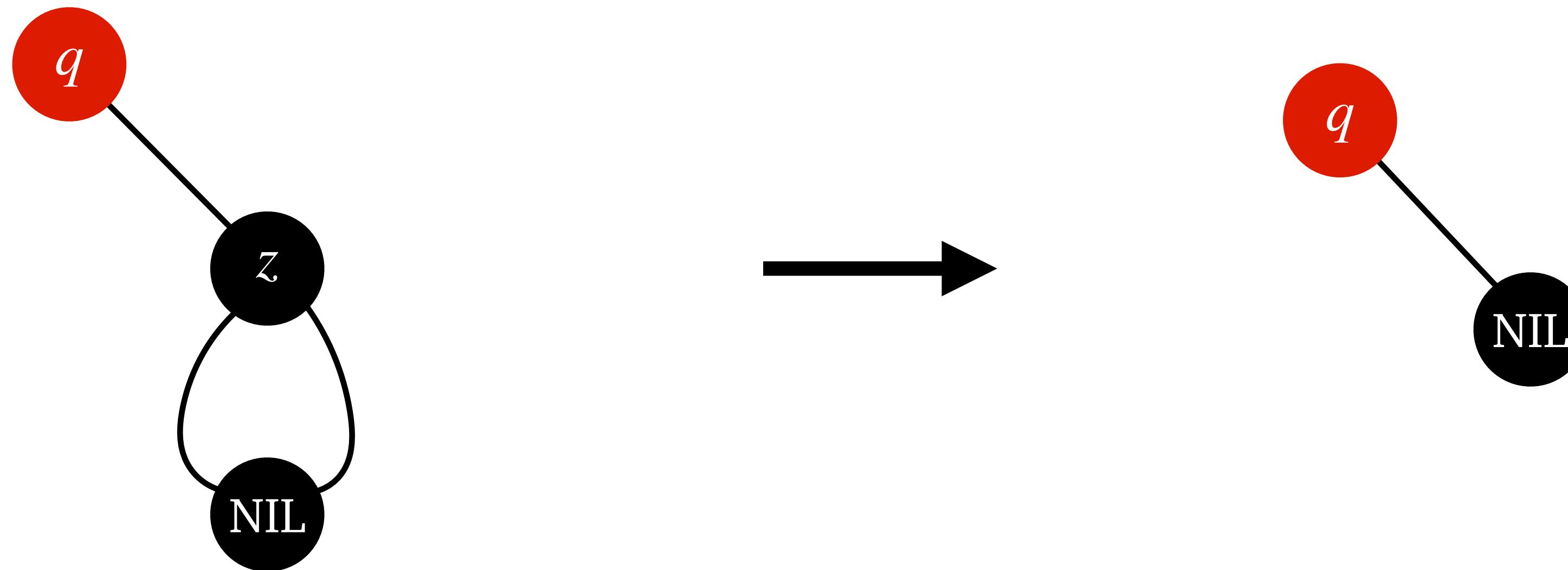
- **Case 1:** z has no children.
- **Case 2:** z has only single child.
- **Case 3:** z has two children.

Easy

Not so easy

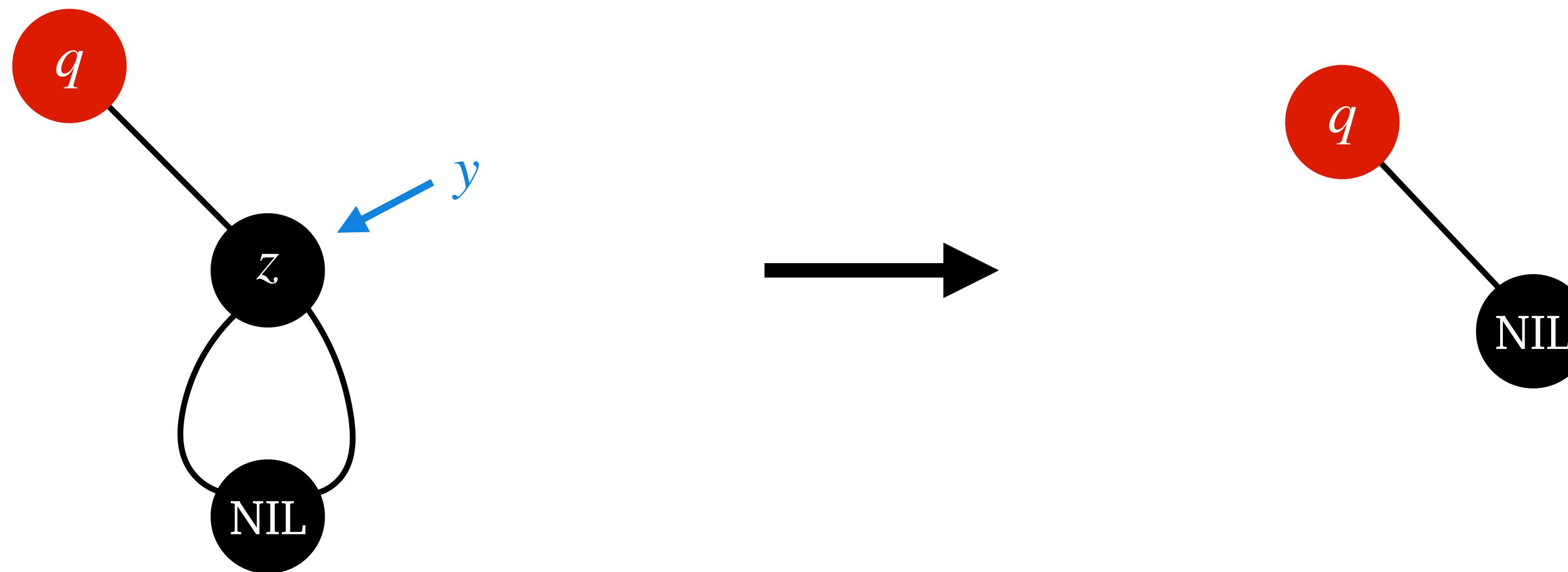
RB-Trees: Deletion

Case 1: z has no (non-NIL) children. (WLOG assume z is a right child.)



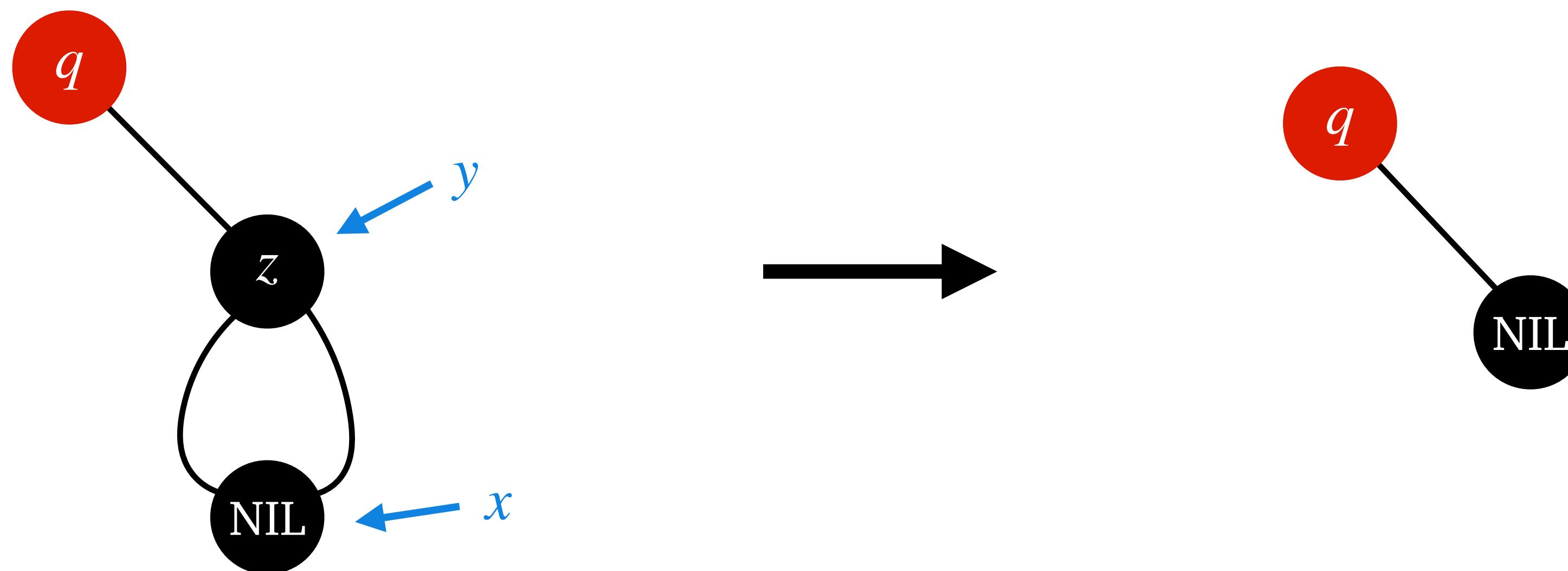
RB-Trees: Deletion

Case 1: z has no (non-NIL) children. (WLOG assume z is a right child.)



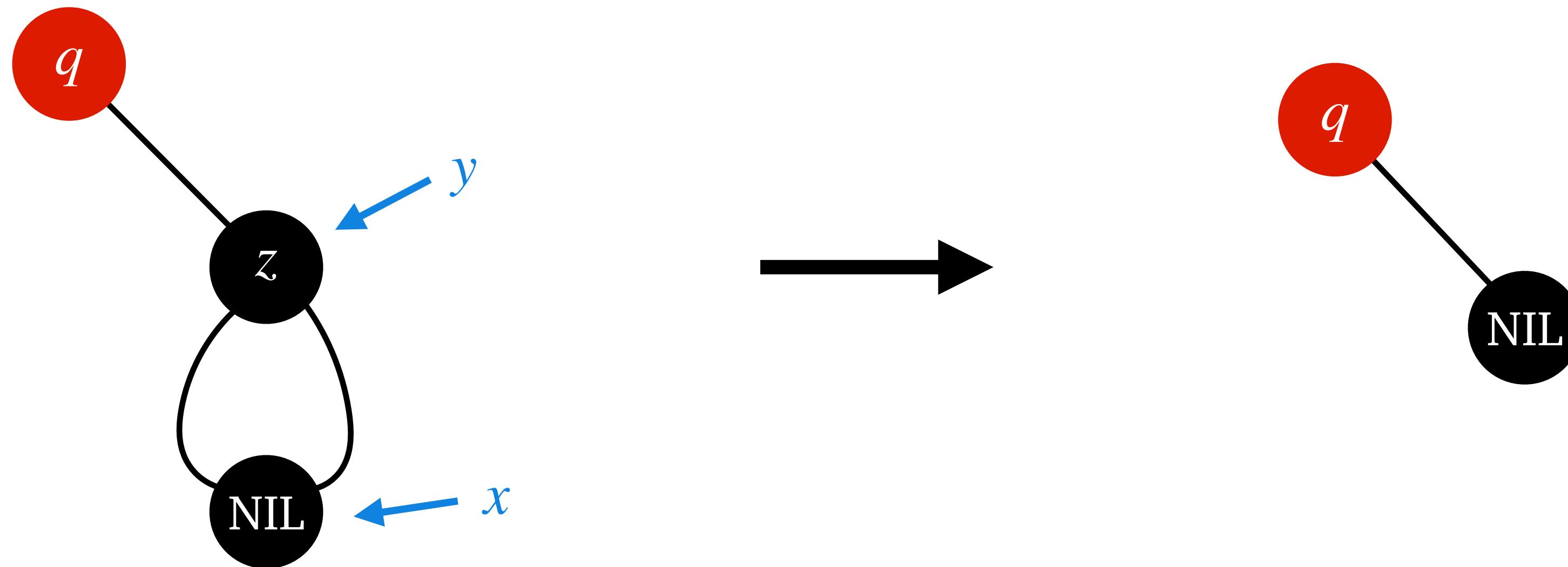
RB-Trees: Deletion

Case 1: z has no (non-NIL) children. (WLOG assume z is a right child.)



RB-Trees: Deletion

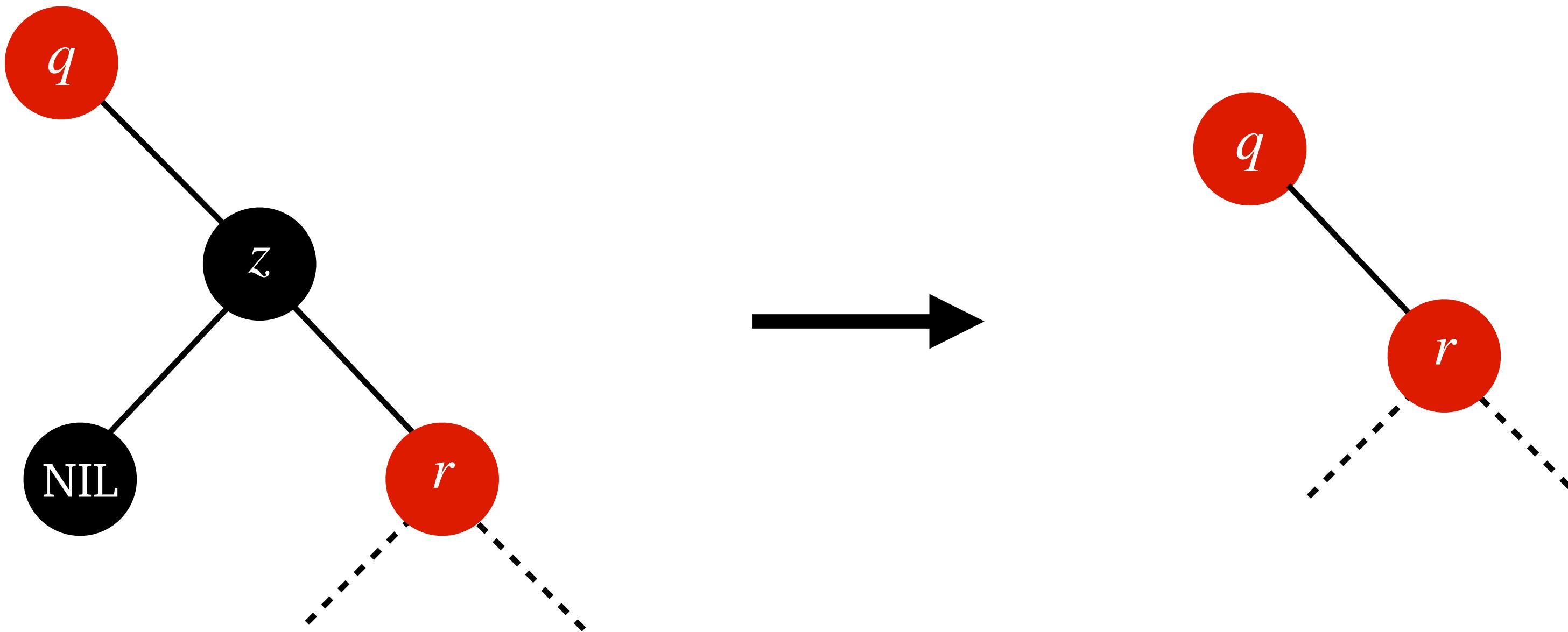
Case 1: z has no (non-NIL) children. (WLOG assume z is a right child.)



Note: In this case, y is z and x is NIL.

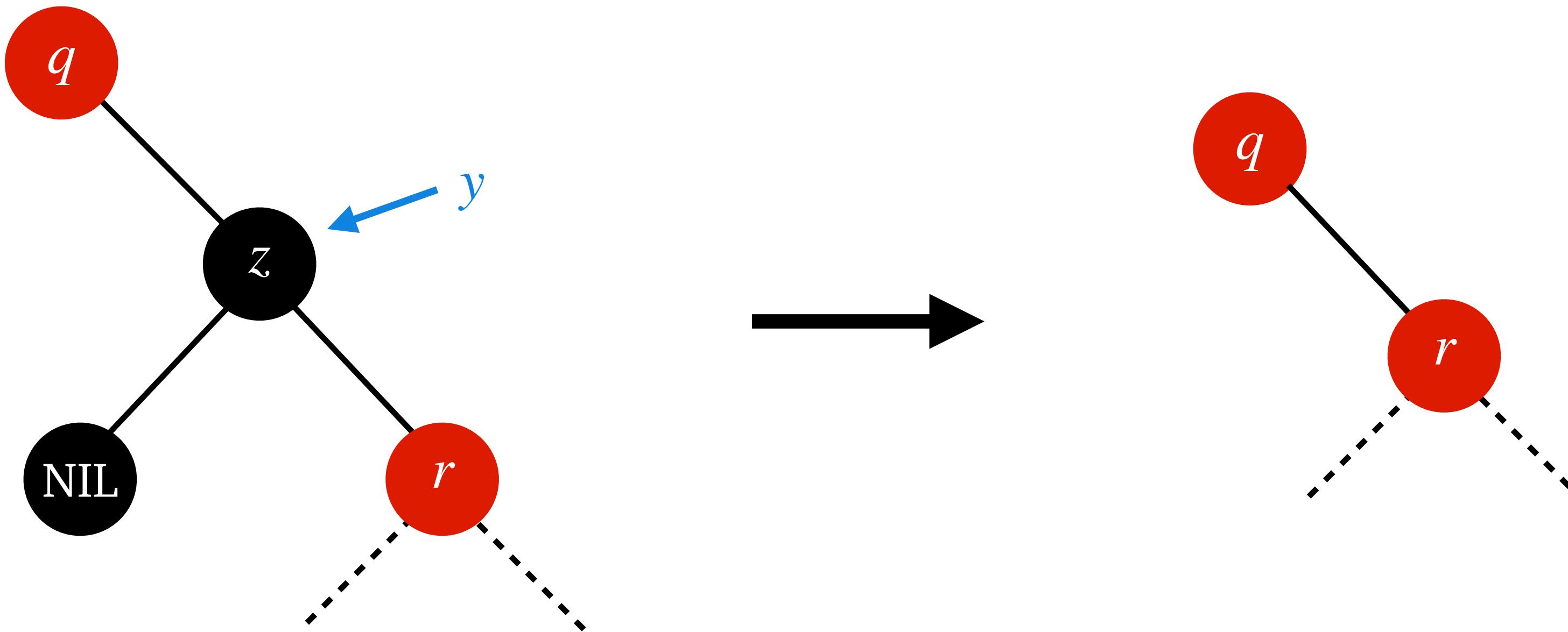
RB-Trees: Deletion

Case 2: z has one (non-NIL) child. (WLOG assume z is a right child.)



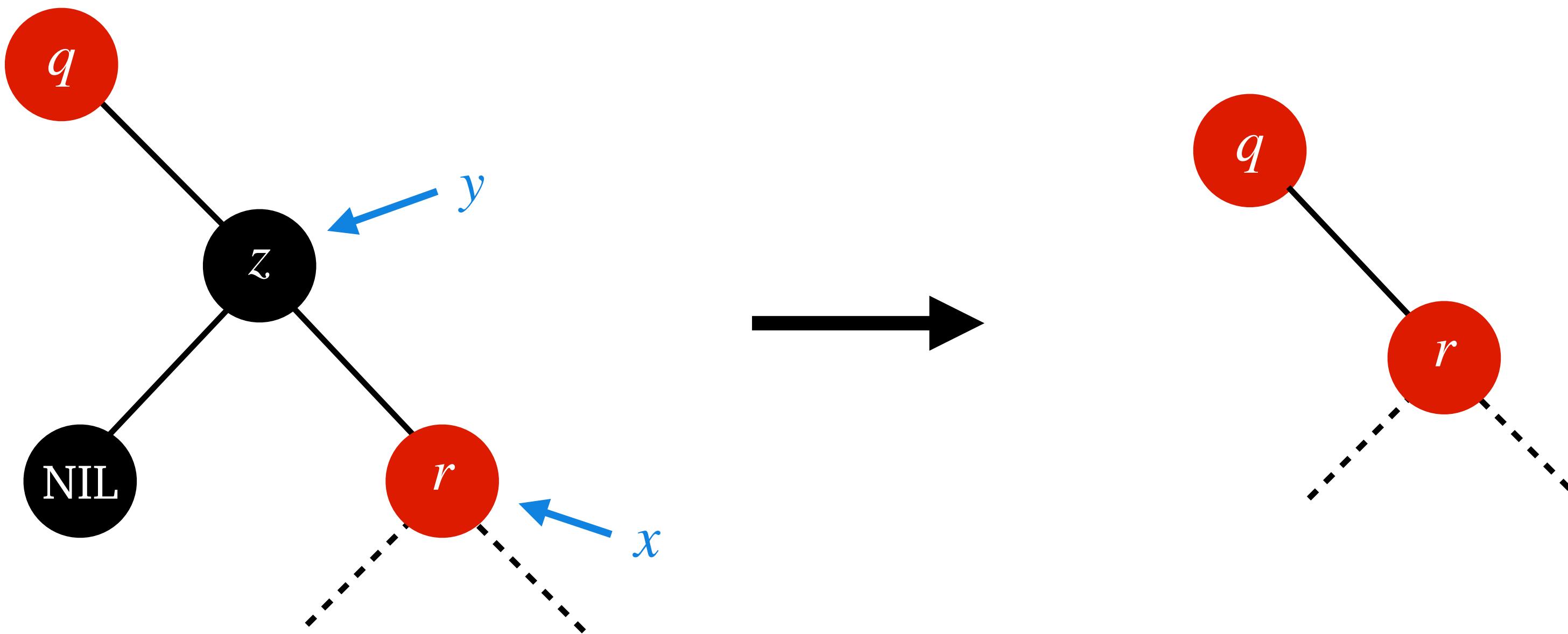
RB-Trees: Deletion

Case 2: z has one (non-NIL) child. (WLOG assume z is a right child.)



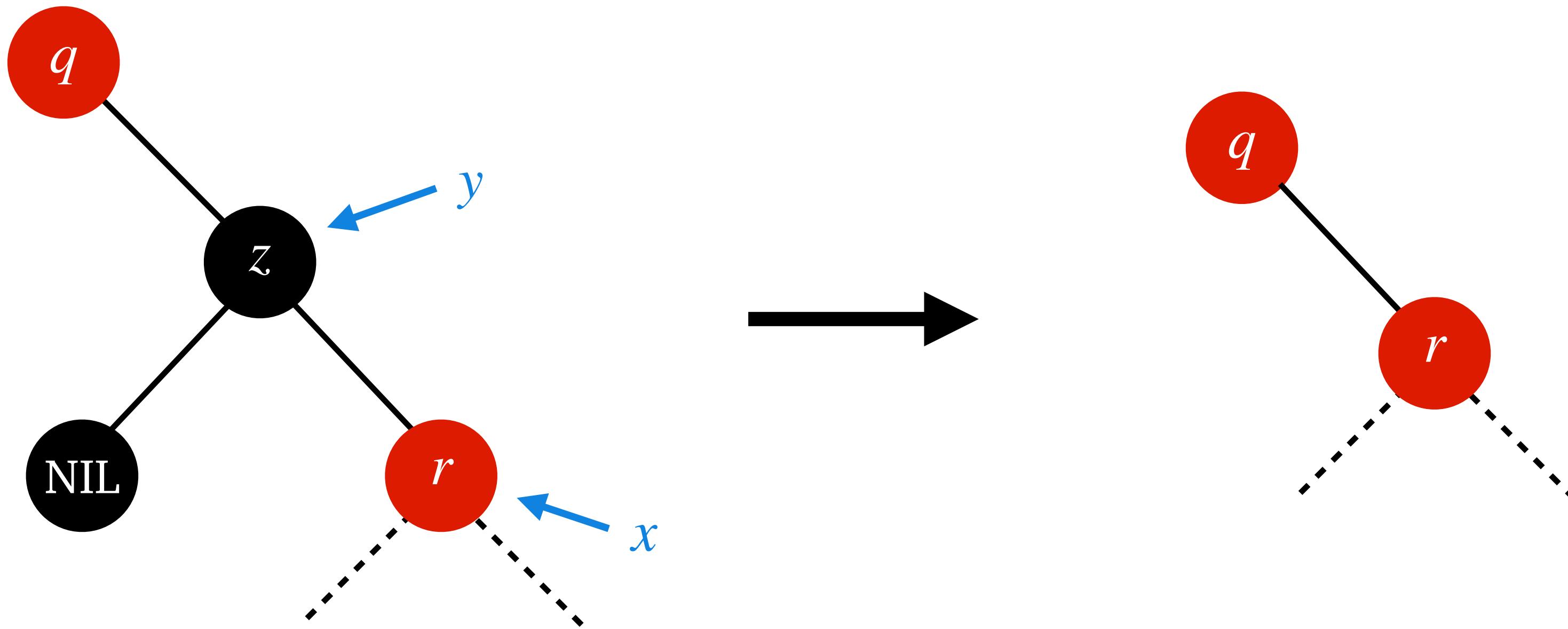
RB-Trees: Deletion

Case 2: z has one (non-NIL) child. (WLOG assume z is a right child.)



RB-Trees: Deletion

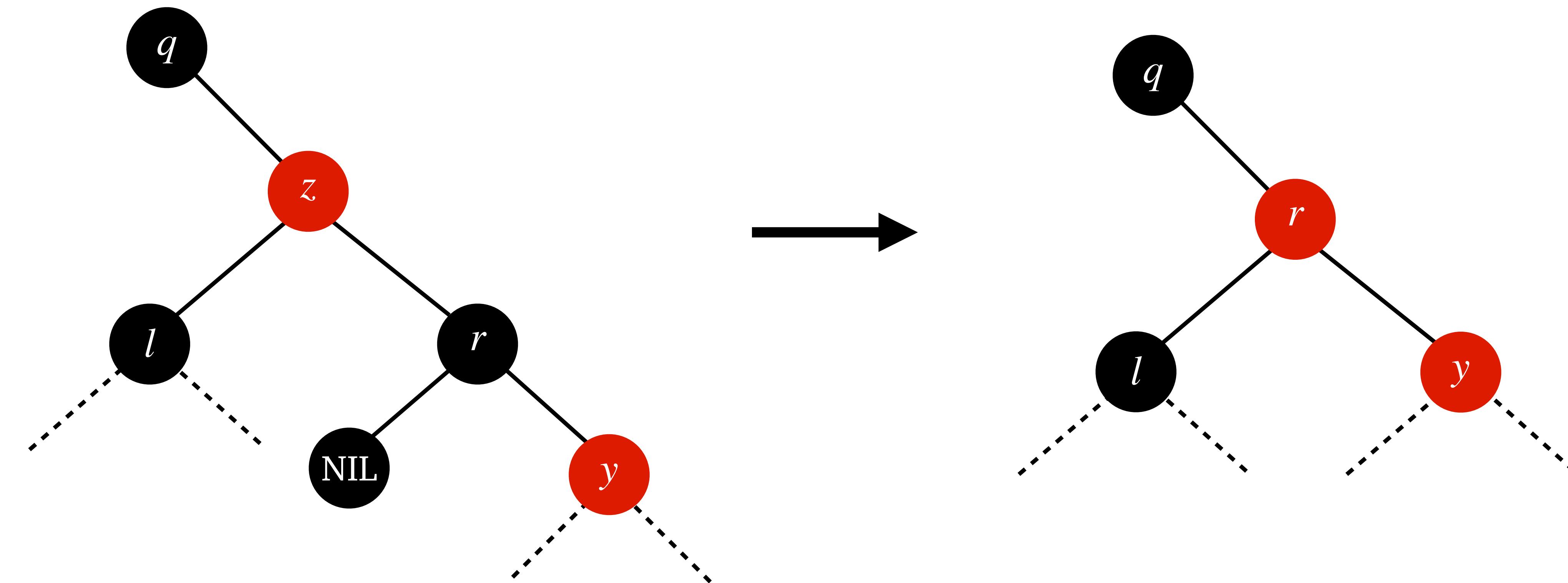
Case 2: z has one (non-NIL) child. (WLOG assume z is a right child.)



Note: In this case, y is z and x is the only child of z .

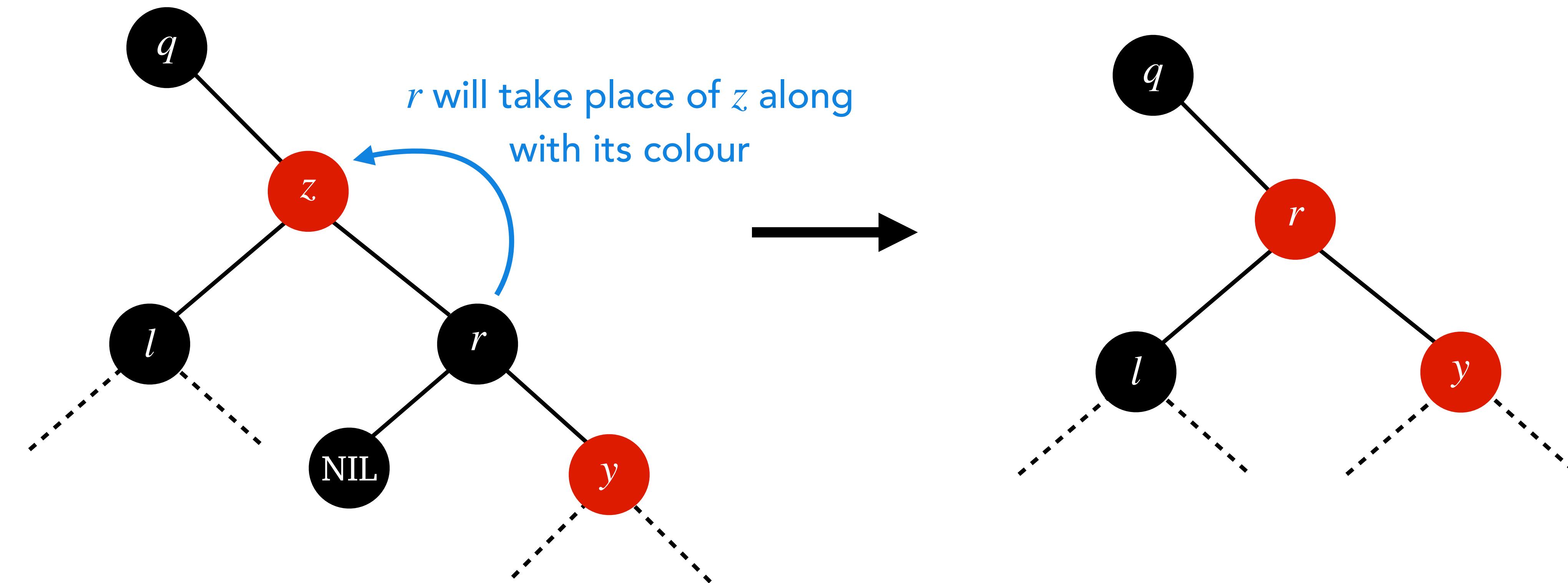
RB-Trees: Deletion

Case 3a: z has two (non-NIL) children where its right child has no left child.



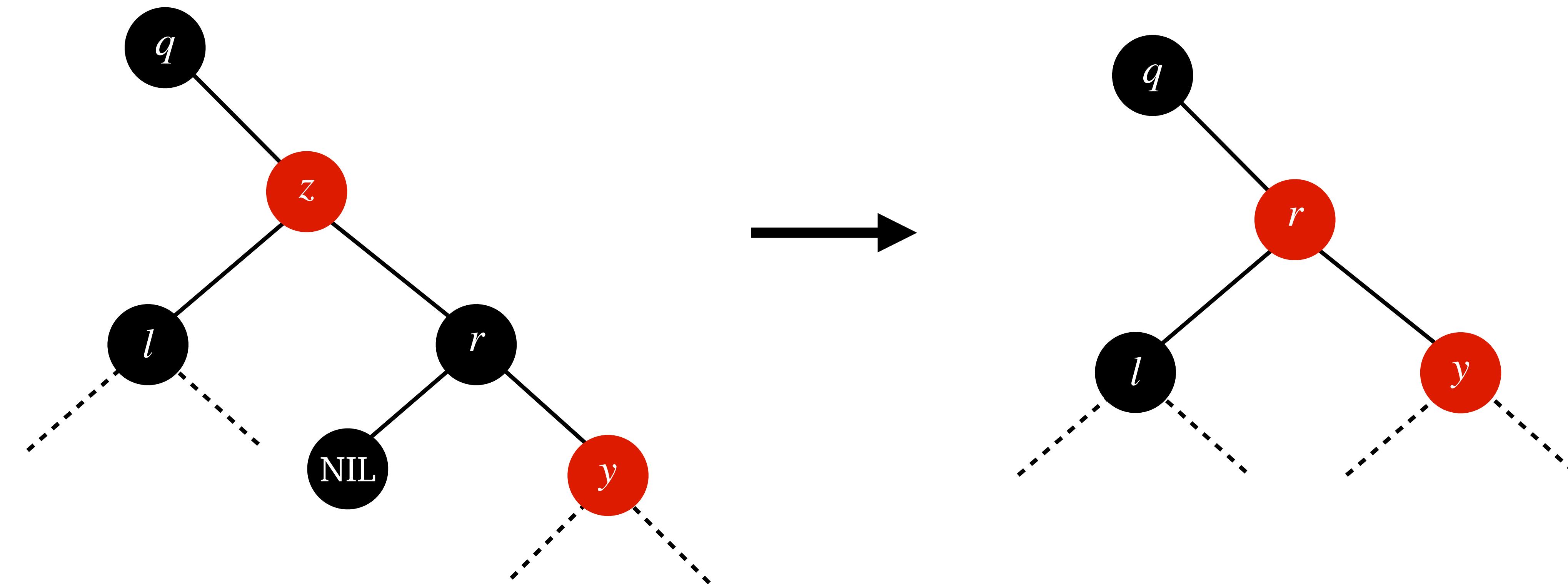
RB-Trees: Deletion

Case 3a: z has two (non-NIL) children where its right child has no left child.



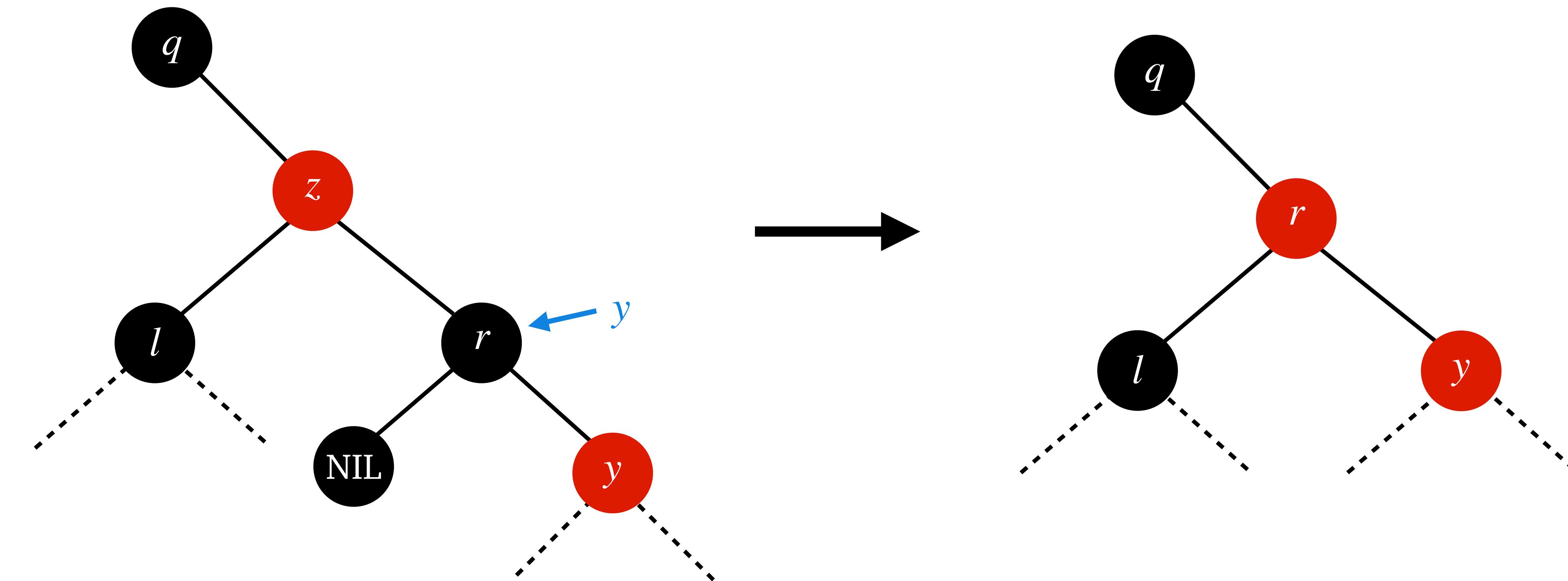
RB-Trees: Deletion

Case 3a: z has two (non-NIL) children where its right child has no left child.



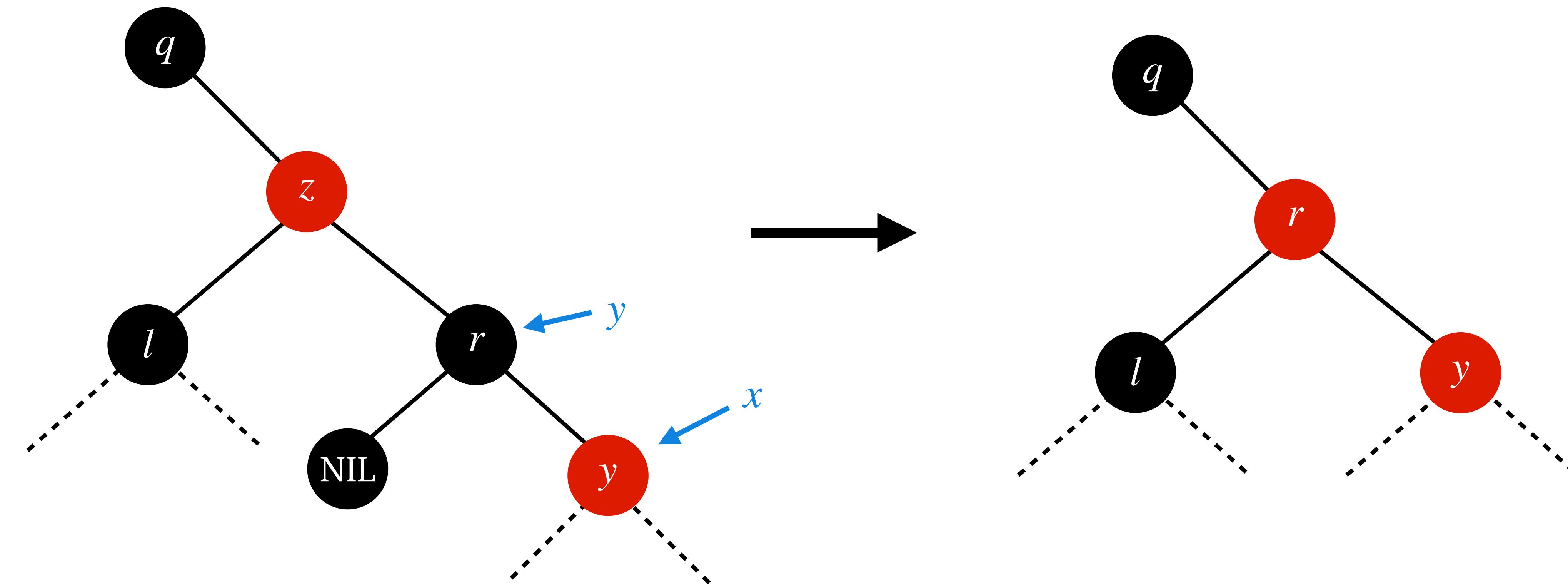
RB-Trees: Deletion

Case 3a: z has two (non-NIL) children where its right child has no left child.



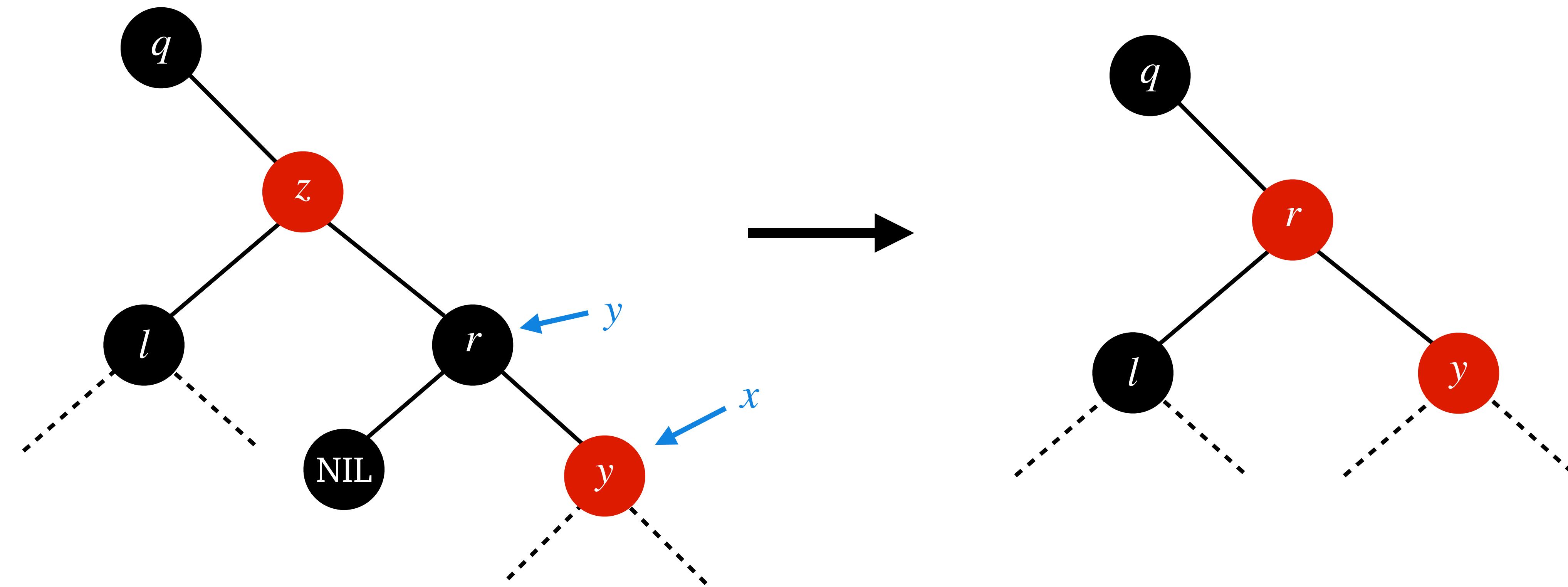
RB-Trees: Deletion

Case 3a: z has two (non-NIL) children where its right child has no left child.



RB-Trees: Deletion

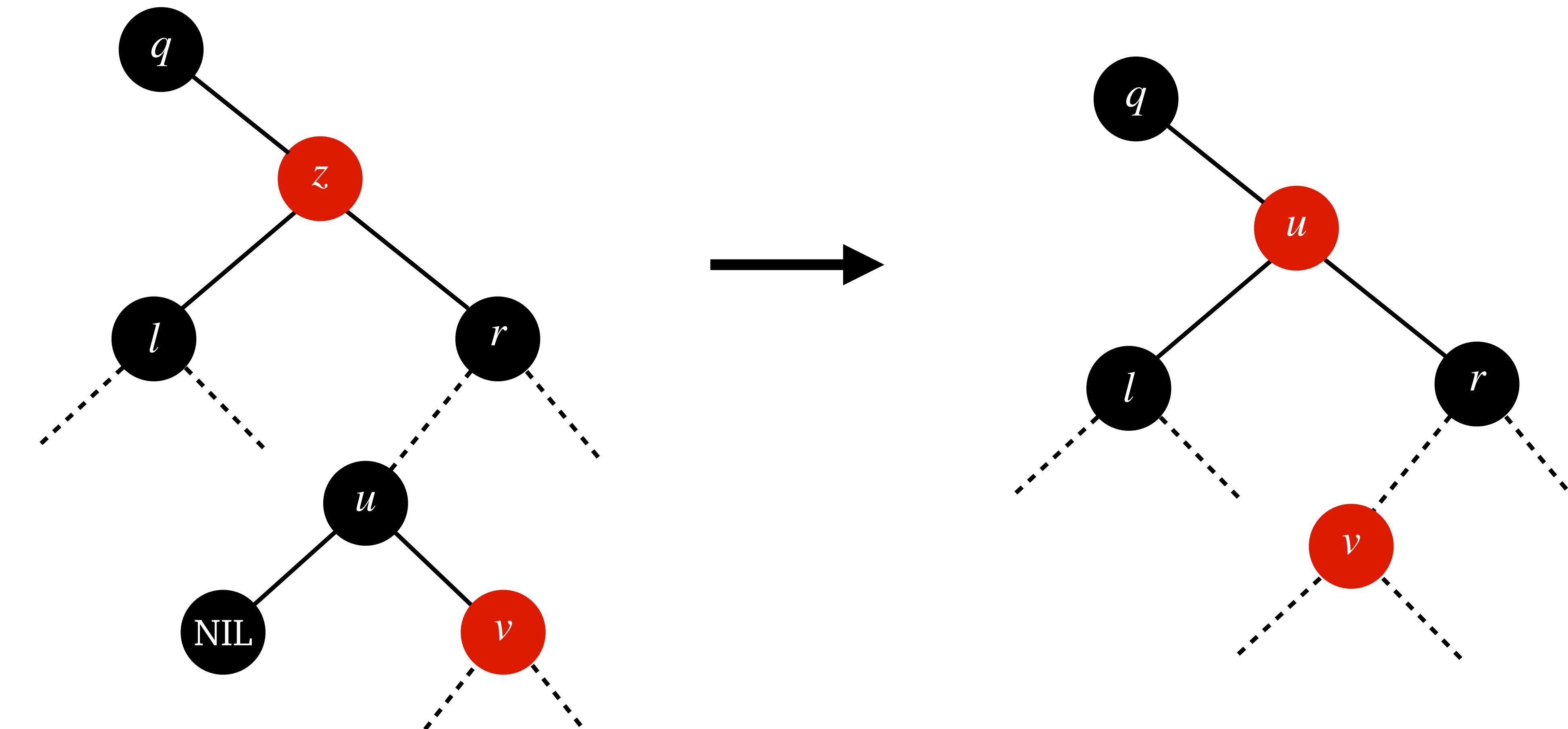
Case 3a: z has two (non-NIL) children where its right child has no left child.



Note: In this case, y is the successor of z and x is either NIL or the only child of y .

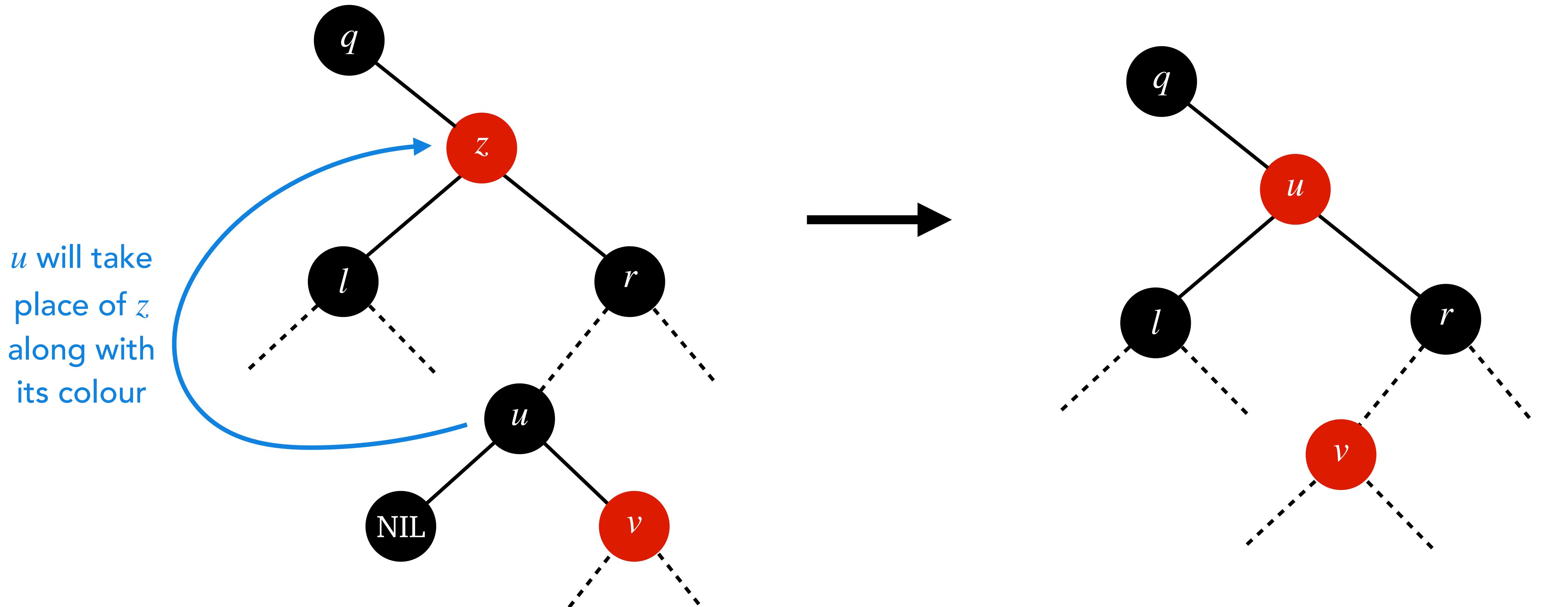
RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



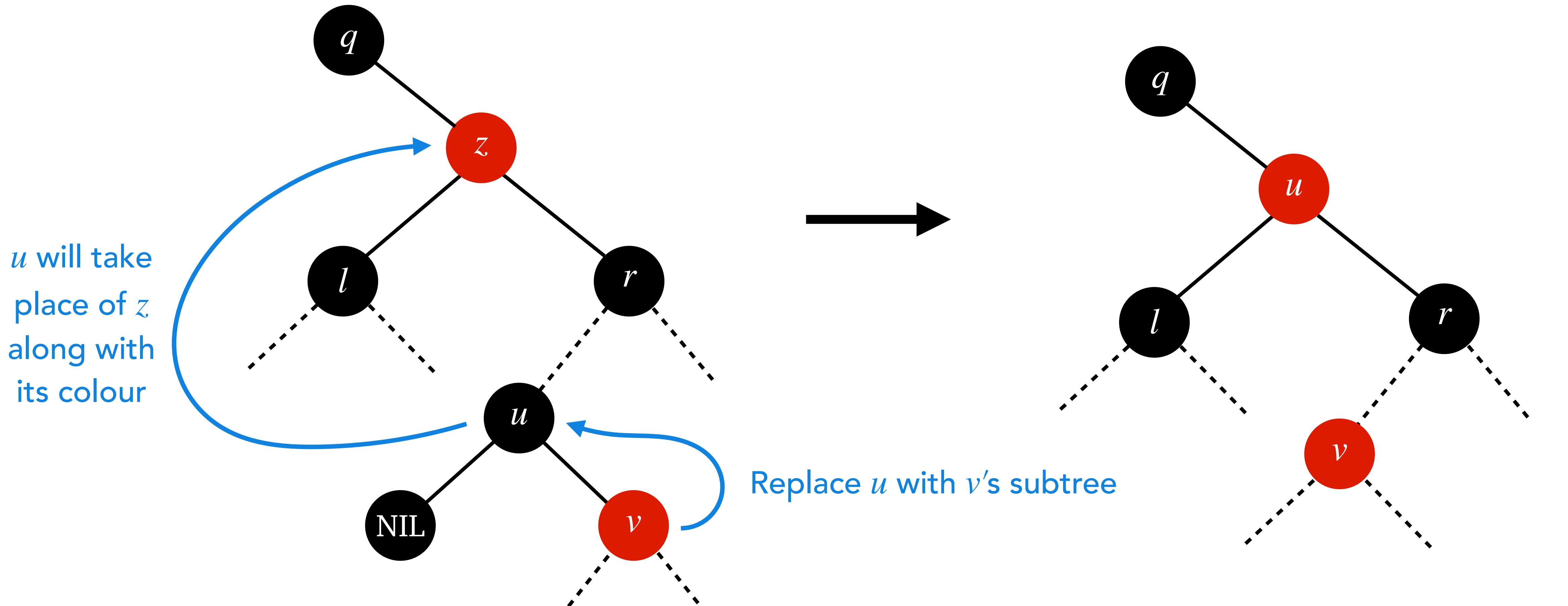
RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



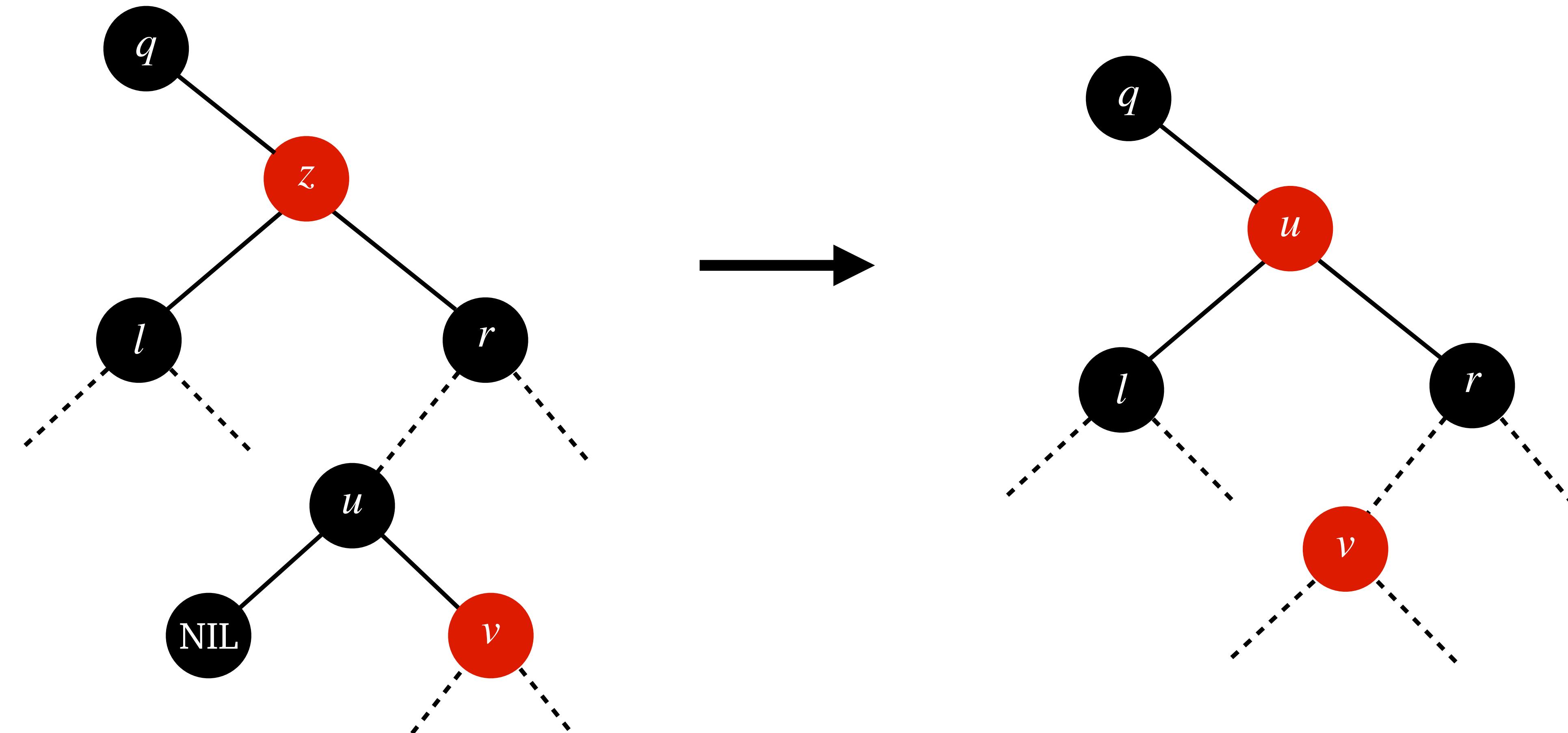
RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



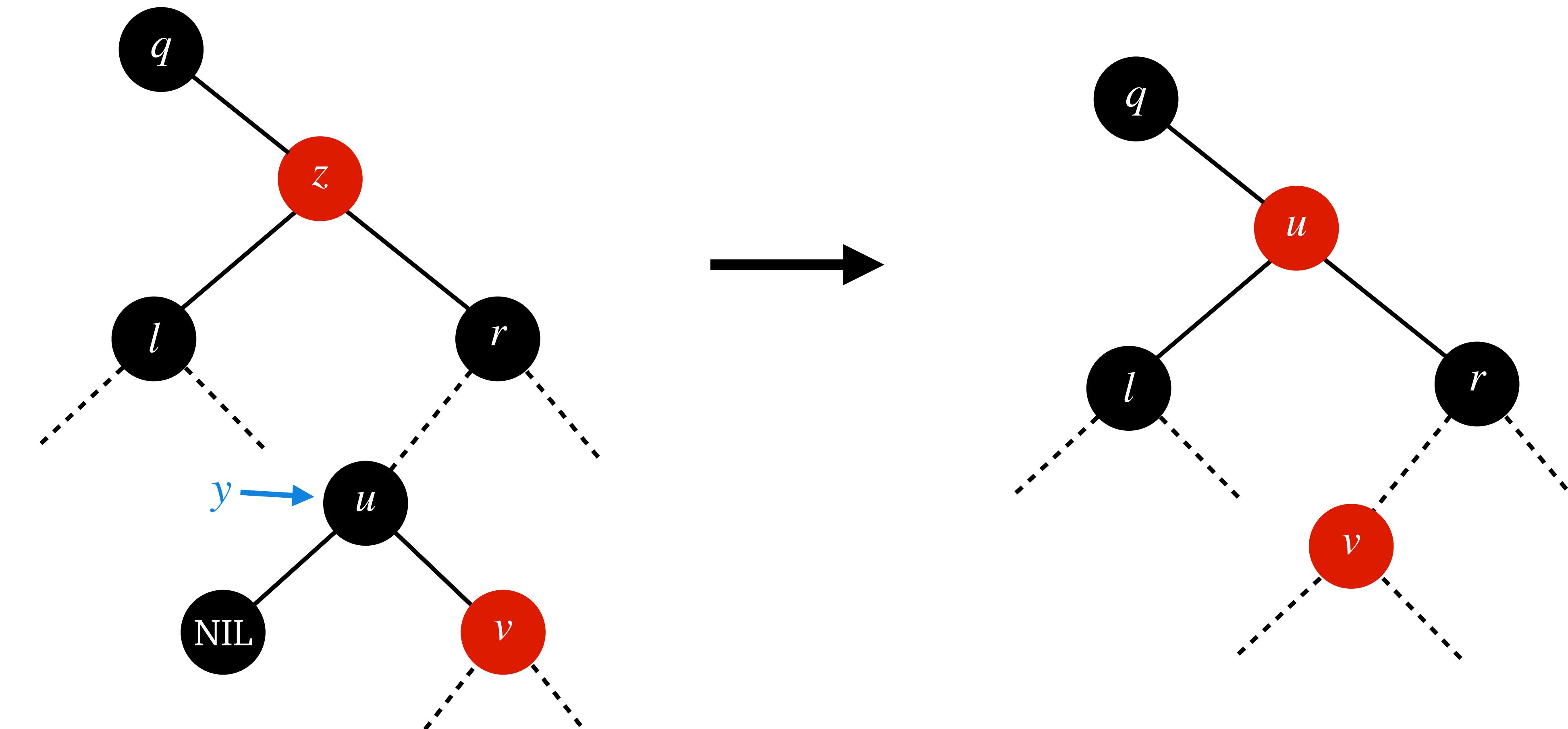
RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



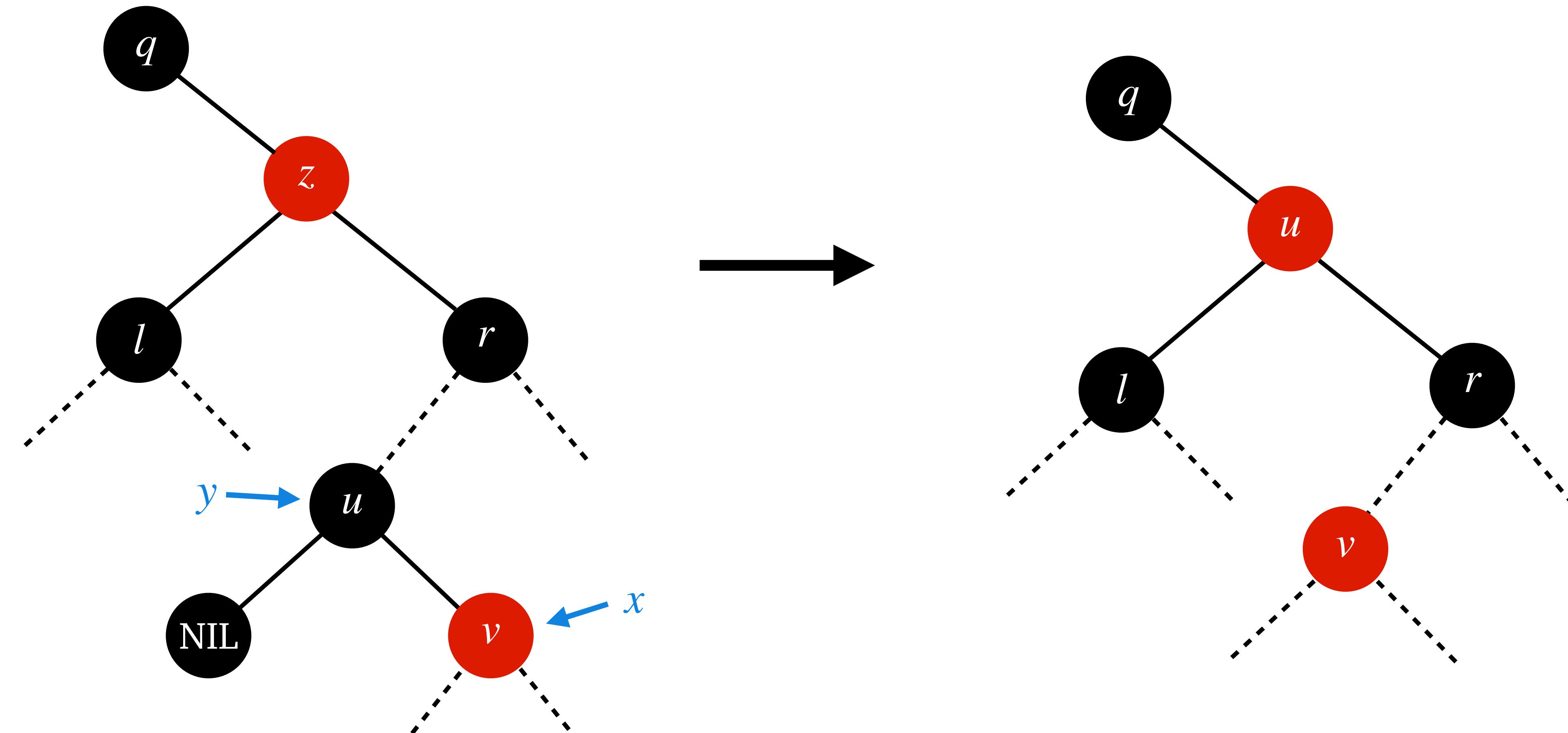
RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



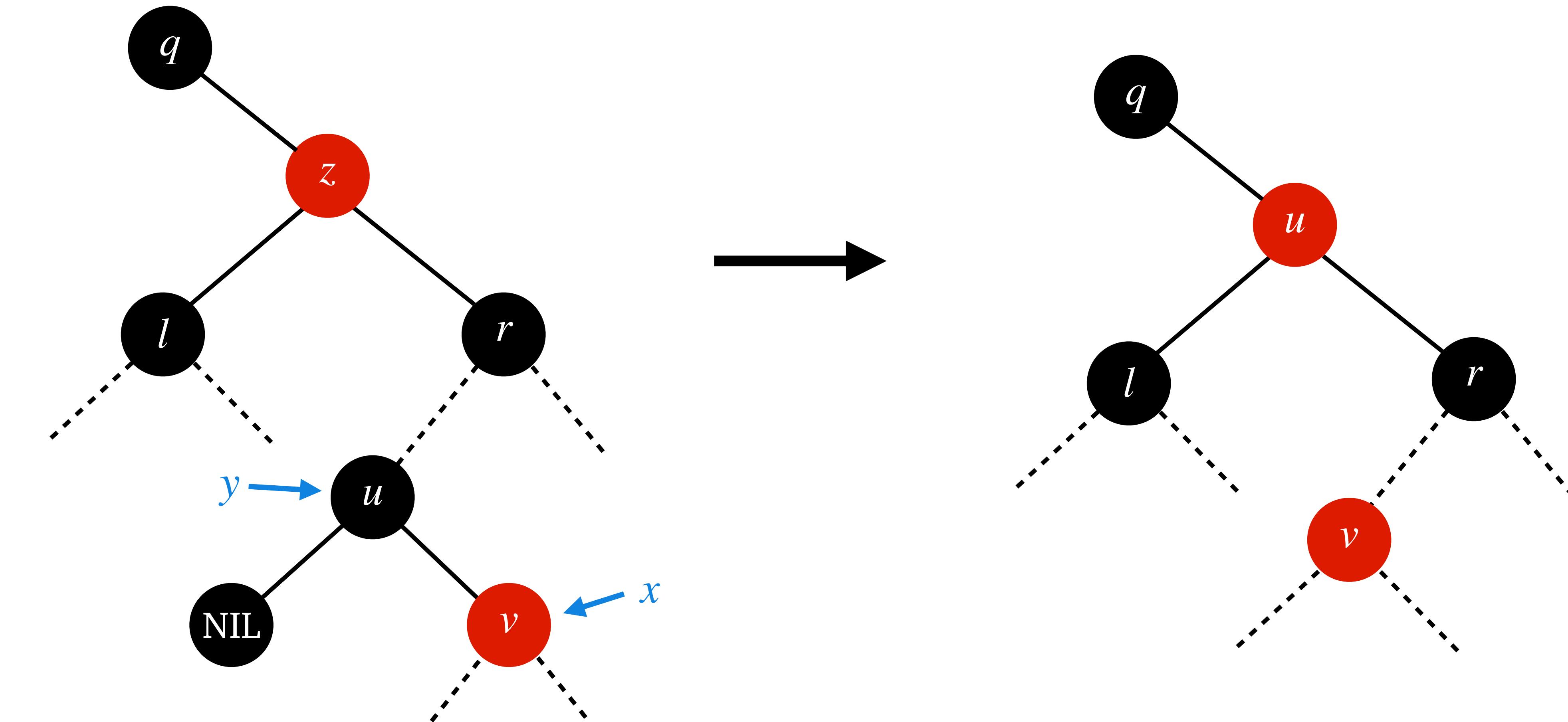
RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



RB-Trees: Deletion

Case 3b: z has two (non-NIL) children where its right child has a left child.



Note: In this case, y is the successor of z and x is either NIL or the only child of y .

RB-Trees: Deletion

RB-Trees: Deletion

Let z be the node we want to delete:

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.
- **Case 3:** Else, y will be the successor of z and x will be y 's only non-NIL child or NIL.

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.
- **Case 3:** Else, y will be the successor of z and x will be y 's only non-NIL child or NIL.

Skeleton for Deletion:

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.
- **Case 3:** Else, y will be the successor of z and x will be y 's only non-NIL child or NIL.

Skeleton for Deletion:

- Find y and x .

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.
- **Case 3:** Else, y will be the successor of z and x will be y 's only non-NIL child or NIL.

Skeleton for Deletion:

- Find y and x .
- If it's **Case 3**, replace z with y .

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.
- **Case 3:** Else, y will be the successor of z and x will be y 's only non-NIL child or NIL.

Skeleton for Deletion:

- Find y and x .
- If it's **Case 3**, replace z with y .
- Remove y .

RB-Trees: Deletion

Let z be the node we want to delete:

- **Case 1:** If z has no (non-NIL) child, then $y = z$ and x will be NIL.
- **Case 2:** If z has exactly one (non-NIL) child, then $y = z$ and x will be y 's only non-NIL child.
- **Case 3:** Else, y will be the successor of z and x will be y 's only non-NIL child or NIL.

Skeleton for Deletion:

- Find y and x .
- If it's **Case 3**, replace z with y .
- Remove y .
- Start fix ups from x depending on the colour of y .